DOCUMENT CONTROL DATA - R	& D entered when the overall report is classified;		
Associates, Inc. Associates, Inc. Water author, Aerospace Medical Research Laboratory, AMD, AFSC, Wright-Patterson AFB, Ohio 87* 45433**			
EXERTIONS IN AIRCRAFT CONT	TROL LOCATIONS		
clueive datee)			
Eberhard Kroemer**, and Llo	oyd L. Laubach*		
76, TOTAL NO. 0	DF PAGES TO. NO. OF REFS		
-0-1097	TO TO THE PORT NUMBER(3)		
D. OTHER REPO	DRT NO(3) (Any other numbers that may be easigned		
AMRL-TR-71	AMRL-TR-71-119		
release; distribution unl:	imited		
Aerospace 1 Aerospace 1 Aerospace 1 Aright-Pati	Aerospace Medical Research Laboratory Aerospace Medical Div., AF Systems Command, Aright-Patterson AFB, Ohio 45433		
Experiments were conducted to measure the maximum isometric forces male subjects could exert at six locations of hand-operated aircraft controls. Forces were measured in two vertical and four to eight horizontal directions. The subjects (n=51) sat in a simulated aircraft seat and exerted forces on a cylindrical handle. Selected anthropometric dimensions were obtained on the subjects and compared with those from the 1967 USAF anthropometric survey of flying personnel. Summary statistics, including the mean, standard error of the mean, standard deviation, standard error of the standard deviation, coefficient of variation, symmetry, kurtosis, and selected percentiles, are presented for each of the 44 force exer- tion measures. An analysis of the magnitude and direction of the force components, recorded in a plane orthogonal to the requested direction, is presented for each of the 44 primary force measurements. The intercorrelations for the 44 exertions, and the correlations between the force exertions and the anthropometric dimensions are presented for 11 of the subjects who completed the 44 force exertion measure- ments on two separate occasions.			
	DOCUMENT CONTROL DATA . R destruct and indexing emotation must be derospace Medical Research Laboratory, AMD, AFSC, fright-Patterson AFB, Ohio 45433** EXERTIONS IN AIRCRAFT CON cherre dates) ame) cherhard Kroemer**, and L1 70. TOTAL NO. 80 -C-1087 D. OTHER REF. Mis opport) AMRL-TR-71 release; distribution unl 12. SPONSDAMA Aerospace Aright-Pat co measure the maximum isc of hand-operated aircraft four to eight horizontal ircraft seat and exerted f ensions were obtained on to chropometric survey of fly ean, standard error of the ard deviation, coefficient entites, are presented for of the magnitude and direct surements. The intercorrect to the force exertions and subjects who completed th lons.		

•

Security Classification						_	_
14		LINH		LINI		LINK	¢
		ROLE	**	ROLE	WT	ROLE	WT.
			1	1			
Anthropometry			1	1		ļ	
Forces			ļ	1		1	
Fuertiene						l	
Exet LIONS			1			1	
			1		1	1	
Strength		1				1	
Aircraft controls							
Intercorrelations							
Muscular strength			1		1	ŀ	
Biomechanics					1	1	
Controls				1			
	1				1		
	Ì						
						1	
5							
5							
1							
5							
l							
1	(
1							
1							
1							
1			1				
1							
			1				
1							
1				ļ			
				1			l
				l			
1				1	ļ		
			1				
1		l	ł				ĺ
		1	1	l	1		
			1		1	1	1
		1	1			1	
						1	
1		1		1	1		l
			1				ļ
1			1	1			1

.

- FRRATA	Υ.		
Security Classification			
DOCUMENT CONT	ROL DATA - R &	D	
ORIGINATING ACTIVITY (Corporate Author) ACTOSPACE Med	Ical Research	. REPORT SE	CURITY CLASSIFICATION
Webb Associates, Inc. Laboratory, A	MD, AFSC,	Unclass	ified
Yellow Springs, Chio Wright-Patterso	on AFB, Chio	Ib. GROUP	
45433**	<u>_</u> _	<u>N/A</u>	
HUMAN FORCE EXERTIONS IN AIRCRA	AFT CONTROL	, LOCATIC	DNS.
4. DESCRIPTIVE NOTER (Type of report and inclusive delce)			
5 AUTHOR(S) (First name, middle initiat, last name)			
Marvin L. Thordsen*, K. H. Eberhard Kroen	ner**, and Ll	oyd L. La	ubach*
February 1972	78. 10TAL NO. OF	PAGES	Th. NO. OF REFS
B. CONTRACT OR GRANT NO. F33615-71-C-1087	SAL ORIGINATOR'S	REPORT NUMB	E#(\$)
5. PROJECT NO. 7184			
« Task No. 718408	SD. OTHER REPERT NO(3) (Any other numbers that may be sealghed this report)		
4 Work Unit 718408018	AMRL-TR-71-119		
Approved for public release; distribution unlimited.			
	Aerospace M Aerospace M Command, V	ledical Re ledical Di Vright-Pat	search Laboratory, Iv., AF Systems Iterson AFB, CH 45433
Experiments were conducted to measure the could exert at six locations of hand-operate measured in two vertical and four to eight he sat in a simulated aircraft seat and exerted anthropometric dimensions were obtained or from the 1967 USAF anthropometric survey of including the mean, standard error of the me of the standard deviation, coefficient of var percentiles, are presented for each of the 4 the magnitude and direction of the force con the requested direction, is presented for ea The intercorrelations for the 44 exertions, a exertions and the anthropometric dimensions are presented for 11 of the subjects who con on two separate occasions.	he maximum i ed aircraft con- orizontal dire- forces on a co- n the subjects of flying perso- ean, standard riation, symm 4 force exert: nponents, rec- ch of the 44 p and the correl s are present- mpleted the 4	sometric ntrols. F ections. cylindrica s and com onnel. Su d deviatio netry, kur ion measu corded in primary fo ations be ed. Test- 4 force ex	forces male subjects orces were The subjects (n=51) I handle. Selected pared with those immary statistics, n, standard error tosis, and selected ires. An analysis of a plane orthogonal to rice measurements. tween the force retest differences kertion measurements

FOREWORD

This study was prepared under Project 7184, "Human Engineering in Advanced Systems," Task 718408, "Anthropology for Design," Work Unit 718408007, "Biomechanics." It was a combined effort of the Anthropology Research Project, Webb Associates, Inc., Yellow Springs, Ohio and the Anthropology Branch, Human Engineering Division, Acrospace Medical Research Laboratory, Wright-Patterson Air Force Base, Ohio.

Project scientists were Mr. Marvin L. Thordsen and Dr. Lloyd L. Laubach, Webb Associates, Inc., under contract F33615-71-C-1087, and K. H. Eberhard Kroemer, Dr. Ing., of the Anthropology Branch. Mr. Charles E. Clauser, Chief, Anthropology Branch, was the contract monitor for the Aerospace Medical Research Laboratory.

The arm strength/reach measuring device used in this study was designed by Mr. Kenneth W. Kennedy, Anthropology Branch. Dr. A. R. Marko, Chief, and Mr. James H. Lovin, of the Medical Electronics Branch, Environmental Medicine Division, Aerospace Medical Research Laboratory, assisted by setting up the recording equipment.

The authors are indebted to Dr. John T. McConville, Webb Associates, Inc., and Dr. Melvin J. Warrick, Associate Director, Human Engineering Division, Aerospace Medical Research Laboratory, for their critical reading of the manuscript and for suggesting many improvements. Thanks are due to Mr. Edmund Churchill, Webb Associates, Inc., who performed the statistical analysis of the data.

This research was funded by the Aerospace Medical Research Laboratory (Anthropology Branch) and the Joint Army-Navy Aircraft Instrumentation Research (JANAIR) working group. Mr. Kenneth W. Kennedy, Aerospace Medical Research Laboratory, performed the necessary liaison between JANAIR and Webb Associates, Inc.

This technical report has been reviewed and is approved.

CLINTON L. HOLT, Colonel, USAF, MC Commander Aerospace Medical Research Laboratory ____

TABLE OF CONTENTS

Section		Pa	ge
I	INTRODU	UCTION	1
П	EQUIPMI	ENT	8
ш	EXPERIN Body Sup	MENTAL CONDITIONS	5 5
	Handle A Hand Hand Direc	rrangements and Force Exertions Ile Location Ile Orientation ction of Force Exertion	5 5 5 6
IV	PROCED	URE	9
v	SUBJECT	rs	11
VI	RESULTS	S	13
VII	DISCUSS Comparise Effects of	ION OF RESULTS on With The Results of Other Studies f Handle Location and Exertion Directions	5 9 59
	On The Componer Mode of (Correlation	e Magnitude of Force nt Forces Operation ons Among Measurements	59 59 60 60
VIII	SUMMAR	RY AND CONCLUSIONS	61
APPEN	NDIX I	Descriptions of Anthropometric Measurements and Grip Strength	62
APPER	NDIX II	Statistical Procedures and Terminology	63
APPEI	NDIX III	Intercorrelation Matrix for the Force Exertions	66
APPE	VDIX IV	Correlation Coefficients Between Measures of Force Exertions and Body Size, Grip Strength, and Age	.78
APPER	v xidu	Test-Retest Results of Force Exertions	75
REFE	RENCES		78

LIST OF ILLUSTRATIONS

Figure	Page
1	Dimensions of the Simulated Aircraft Seat
2	Analysis of Force Exertions4

LIST OF TABLES

Tabl	e	Page
1	HANDLE LOCATIONS, ORIENTATIONS, AND DIRECTIONS OF FORCE EXERTIONS	7
2	CHARACTERISTICS OF THE STUDY SAMPLE AS COMPARED WITH THE 1967 USAF SURVEY OF FLYING PERSONNEL	
8	SUMMARY TABLE OF THE 44 FORCE EXERTIONS	14
4	STICK: FORWARD FORCE	15
5	STICK: BACKWARD FORCE	16
6	STICK: BACKWARD FORCE, INWARD PUSH	17
7	STICK: BACKWARD FORCE: TWO HANDS	
8	STICK : LEFT FORCE	19
9	STICK: RIGHT FORCE	20
10	STICK: UP FORCE	21
11	STICK: DOWN FORCE	22
12	THROTTLE (SIDEARM CONTROLLER): FORWARD FORCE, HANDLE VERTICAL	23
13	THROT 3 (SIDEARM CONTROLLER): FORWARD FORCE, HALLE HORIZONTAL	24
14	THROTTLE (SIDEARM CONTROLLER): BACKWARD FORCE, HANDLE VERTICAL	25
15	THROTTLE (SIDEARM CONTROLLER) : BACKWARD FORCE, HANDLE HORIZONTAL	
16	THROTTLE (SIDEARM CONTROLLER): LEFT FORCE	27
17	THROTTLE (SIDEARM CONTROLLER): RIGHT FORCE	
18	THROTTLE (SIDEARM CONTROLLER): UP FORCE	29
19	THROTTLE (SIDEARM CONTROLLER) : DOWN FORCE	
20	COLLECTIVE: FORWARD FORCE	
21	COLLECTIVE: BACKWARD FORCE	32
22	COLLECTIVE: LEFT FORCE	33
23	COLLECTIVE: RIGHT FORCE	34
24	COLLECTIVE: UP FORCE	
25	COLLECTIVE: DOWN FORCE	
26	OVERHEAD CONTROL: FORWARD FORCE	
27	OVERHEAD CONTROL: BACKWARD FORCE	

LIST OF TABLES-Continued

Table		Page
28	OVERHEAD CONTROL: LEFT FØRCE	89
29	OVERHEAD CONTROL: RIGHT FORCE	40
30	OVERHEAD CONTROL: UP FORCE	41
31	OVERHEAD CONTROL: DOWN FORCE	42
32	PANEL CONTROL: FORWARD FORCE	43
88	PANEL CONTROL: BACKWARD FORCE	
84	PANEL CONTROL: LEFT/FORCE	45
35	PANEL CONTROL: RIGHT FORCE	46
36	PANEL CONTROL: UP FORCE	47
37	PANEL CONTROL: DOWN FORCE	48
38	HATCH CONTROL: FORWARD FORCE	49
39	HATCH CONTROL: BACKWARD FORCE	50
40	HATCH CONTROL: LEFT FORCE	51
41	HATCH CONTROL: RIGHT FORCE	52
42	HATCH CONTROL: UP FORCE	53
43	HATCH CONTROL: DOWN FORCE	54
44	HATCH CONTROL: FORWARD FORCE (ROTATED 45° CLOCKWISE)	55
45	HATCH CONTROL: BACKWARD FORCE (ROTATED 45° CLOCKWISE)	56
46	HATCH CONTROL: LEFT FORCE (ROTATED 45° CLOCKWISE)	57
47	HATCH CONTROL: RIGHT FORCE (ROTATED 45° CLOCKWISE)	58

SECTION I

the second second

۰.

INTRODUCTION

This report describes experiments designed to measure the maximal ("pcak") forces that subjects can exert at selected hand-operated aircraft control locations. The research supplements related previous work by Hunsicker (1955, 1957) and Watt (1963) in which other than "peak" scores were reported.

Three common control locations were evaluated: "Stick," "Throttle," and "Collective." Three other locations were also included: "Overhead Control," "Panel Control," and "Hatch Control."

The primary purpose of this study was to provide engineering data to aid in selecting and arranging aircraft controls.

SECTION II

. .

EQUIPMENT

The equipment used in this experiment consisted mainly of a seat, a strain gauge force transducer, and recording equipment. The seat simulated a standard aircraft seat (dimensions are shown in figure 1). It was constructed of metal with hard surfaces replacing the usual seat cushions. No adjustments were made for the individual subjects.

Figure 1. DIMENSIONS OF THE SIMULATED AIRCRAFT SEAT

3

Preceding page blank

The force transducer (referred to as the 'handle') was a steel cylinder with a diameter of $1\frac{1}{2}$ inches and a length of 5 inches. Its surface was knurled to minimize slippage when grasped. The handle could freely rotate about the longitudinal axis and could be located in any desired spatial location with respect to Seat Reference Point (SRP).*

Inside the handle were two sets of strain gauges arranged perpendicular to each other, operating on the conventional Wheatstone bridge arrangement. When a force was exerted on the handle, the balance between the two sides of a set of gauges was altered accordingly. The resulting current, proportional to the force applied, was recorded using a Brush Mark 200 recorder. The two sets of strain gauges read out on separate channels of the recorder.

The force exertions requested by the experimenter were in the plane of sensitivity of one of the sets of strain gauges. Any deviation from the requested direction gave two readouts. One readout indicated the force transmitted in the requested direction while the other readout indicated the force transmitted perpendicularly to the requested direction.

Since these readouts monitored forces that were perpendicular to each other, the length and direction of the force vector actually exerted can be assessed by vector addition in the plane established by the recorded components (see figure 2).

Figure 2. ANALYSIS OF FORCE EXERTIONS

From the record of each exertion in the requested direction, the largest amplitude ("peak") was read. The recordings for the readings perpendicular to the requested direction were taken by reading the amplitude of the perpendicular component at the same time as the "peak" amplitude occurred in the requested direction.

All force recordings were read to the nearest pound with a standard reading error estimated to be one pound; therefore, the readings are correct within ± 1 pound for 68% of the values, ± 2 pounds for 95% of the values, and ± 3 pounds for 99% of the values.

^{*}Seat Reference Point (SRP) is the point of intersection of the midline of the ceat pan with the midline of the seat back.

The force transducer (referred to as the 'handle') was a steel cylinder with a diameter of $1\frac{1}{2}$ inches and a length of 5 inches. Its surface was knurled to minimize slippage when grasped. The handle could freely rotate about the longitudinal axis and could be located in any desired spatial location with respect to Seat Reference Point (SRP).*

Inside the handle were two sets of strain gauges arranged perpendicular to each other, operating on the conventional Wheatstone bridge arrangement. When a force was exerted on the handle, the balance between the two sides of a set of gauges was altered accordingly. The resulting current, proportional to the force applied, was recorded using a Brush Mark 200 recorder. The two sets of strain gauges read out on separate channels of the recorder.

The force exertions requested by the experimenter were in the plane of sensitivity of one of the sets of strain gauges. Any deviation from the requested direction gave two readouts. One readout indicated the force transmitted in the requested direction while the other readout indicated the force transmitted perpendicularly to the requested direction.

Since these readouts monitored forces that were perpendicular to each other, the length and direction of the force vector actually exerted can be assessed by vector addition in the plane established by the recorded components (see figure 2).

÷

- The vector of the force actually exerted (designated by the dotted line arrow) deviates from the requested direction.
- (a) A component vector of the force actually exerted is transmitted through strain gauges sensitive in the requested direction.

(b) Another component vector of the actually exerted force is transmitted through strain gauges sensitive in a direction perpendicular to the requested direction.

Figure 2. ANALYSIS OF FORCE EXERTIONS

From the record of each exertion in the requested direction, the largest amplitude ("peak") was read. The recordings for the readings perpendicular to the requested direction were taken by reading the amplitude of the perpendicular component at the same time as the "peak" emplitude occurred in the requested direction.

All force recordings were read to the nearest pound with a standard reading error estimated to be one pound; therefore, the readings are correct within ± 1 pound for 68% of the values, ± 2 pounds for 95% of the values, and ± 3 pounds for 99% of the values.

^{*}Seat Reference Point (SRP) is the point of intersection of the midline of the seat pan with the midline of the seat back.

SECTION III

EXPERIMENTAL CONDITIONS

In this study all but one of the exertions were made with the left hand. Exertions with the left hand were selected because they are likely to yield slightly lower strength scores than exertions with the right hand. Design criteria for establishing operational force capability limits generally call for baseline data from the "weaker" limb involved. Heebgil-Nielsen (1964) points out that "... in adult males one must expect a variation in strength of symmetrical muscle groups of 5-14%." However, for most practical purposes the small but obvious statistical differences between force exertions with the left and the right hand can be ignored.

Body Support-Posture

The subject sat, unrestrained, in the seat, grasping the handle assembly during the force exertions. He had support from the seat back, sides, and the foot-rest, all of which he could use to brace against.

During the exertions, the subject was required to:

- Keep the feet on the foot-rest without crossing the legs.
- Keep the right hand on the right thigh. This eliminated the subject grasping the chair with the right hand to help brace.
- Have at least one point of the upper back (from the shoulder blades on up) in contact with the back-rest at all times. This restriction allowed some freedom of shoulder rotation from the seat back.

Handle Arrangements and Force Exertions

The handle arrangements and the directions of force exertion used in this study were selected to simulate actual aircraft control operation according to their practical importance, biomechanical implications, and feasibility.

Handle Location: The handle locations were selected to approximate placement of several common aircraft controls. For short reference they are called:

- Stick
- Throttle (Sidearm Controller)
- Collective
- Overhead Control
- Panel Control
- Hatch Control

Their exact locations with respect to Seat Reference Point (SRP) and seat centerline are listed in table 1.

The Stick, Throttle, and Collective positions were selected because they are vital, primary aircraft controls with the Throttle position also approximating the location of a sidearm control. The coordinates for these three controls comply with Military Standards MS 33574 (1969) and MS 33575 (1969).

The remaining three control locations (referred to as Overhead Control, Panel Control, and Hatch Control) were selected since they can pose operational difficulties under G (acceleration) loads. Their locations were established according to biomechanical considerations at the fifth percentile arm-reach envelope of the USAF population as determined by Kennedy (1964).

Handle Orientation: The orientations of the long axis of the handle in the six different locations are listed in table 1. In general, the handle was oriented to approximate the actual hand position used when operating the aircraft control. Thus, in some instances, the handle was arranged vertically, while in others it was horizontal. In the latter orientation, it was either in the subject's frontal plane* or in a sagittal plane.**

Direction of Force Exertion: The directions of down) or horizontal; if horizontal, they were eit' (forward/backward), or at 90° (left/right), or c

reservices were either vertical (up/ rallel to the long axis of the seat to that axis.

•

Table 1 describes the handle location, orientations, and directions of force exertion for each of the six control positions.

^{*}The frontal plane refers to any vertical plane perpendicular to the seat center line.

^{**}The sagittal plane refers to any vertical plane either in or parallel to the seat center line.

HANDLE LOCATIONS, ORIENTATIONS, AND DIRECTIONS OF FORCE EXERTIONS

Variable	Handle Location	Handle Orientation	Directions of Exertions	
Stick	In centerline 12.4 inches above SRP 13 inches forward of	Vertical	 Forward Backward Inward Push Backward- Two Hands Left Right 	
	SRP	Horizontal Frontal	7. Up 8. Down	
		Vertical	1. Forward	
	10 inches	Horizontal Frontal	2. Forward	
(TTk = + 441+	left of SRP	Vertical	3. Backward	
(Sidearm Controller)	above SRP	Horizontal Frontal	4. Backward	
	forward of SRP	Vertical	5. Left 6. Right	
		Horizontal Frontal	7. Up 8. Down	
	14 inches left of SRP 4 75 inches	Horizontal Frontal	1. Forward 2. Backward	
Collective	above SRP 10.3 inches forward of SRP	Horizontal Sagittal	3. Left 4. Right 5. Up 6. Down	
	10 inches left of SRP	Horizontal Frontal	1. Forward 2. Backward	
Overhead Control	47.3 inches above SRP	Horizontal Sagittal	3. Left 4. Right	
	0.0 inches forward of SRP	Horizontal Frontal	5. Up 6. Down	
Panel Control	10 inches left of SRP 23 inches above SRP	Vertical	1. Forward 2. Backward 3. Left 4. Right	
	24.7 inches forward of SRP	Horizontal Frontal	5. Up 6. Down	
	18 inches right of SRP 23 inches above SRP 13 inches forward of SRP	13 inches right of SRP Hatch 23 inches Control above SRP H	Vertical	1. Forward 2. Backward 3. Left 4. Right
Hatch Control			Horizontal	5. Up 6. Down
		Vertical	7. Forward - 45° 8. Backward - 45° 9. Left - 45° 10. Right - 45°	

SECTION IV

PROCEDURE

The subject was given a general description of the purpose and procedure of the experiment. The anthropometric dimensions listed in table 2 were taken. Then the subject took his place in the simulated aircraft seat (fig. 1) and specific instructions were verbally relayed about the type, manner, and directions of exertions he was to make.

The experimenter attempted to use an informal and friendly, but businesslike approach with all subjects. The experiment was generally conducted with only the test subject and the experimenter present in the testing room.

Each subject was told:

- Exert an isometric force in the following manner, . . . "Increase gradually until you feel you are at a maximum, . . . then release. Don't jerk."
- He would determine the length of each exertion (they were usually around 3.5 seconds).
- The manner in which to grasp the handle.
- He could rest as long as he desired between exertions, and when ready, go on to the next one.
- There would be 44 exertions with the total experiment time being about 2 hours.
- He would receive one practice exertion to acquaint him with the feel of the apparatus.
- There would be a 15-20 minute break about half way through the experiment.
- He could take other breaks at any time he wished, by just telling the experimenter.
- No smoking, drinking, etc., would be allowed during the exertions, but it was permissible during breaks.
- Not to hurt himself.

The sequence of the force exertions made by the subject was determined by first randomly ordering the six locations of the handle. Within each location, the handle orientations were ordered randomly. Finally, the exertion directions within each orientation were randomly ordered. There was no repetition of exertions unless extenuating circumstances made it impossible to give a maximum exertion during the first attempt. During the exertions the experimenter did not talk to or encourage the subject. After each exertion the subject was told the magnitude of force achieved.

Preceding page blank

SECTION V

SUBJECTS

The 51 male subjects used in this study, all volunteers who were paid (hourly) for their participation, were from either the University of Dayton, Dayton, Ohio (n=45) or the Aerospace Medical Research Laboratory (n=6). Subjects known to have a physical deformity or an organic deficiency were excluded from the study. The close proximity of the handle assembly in the stick position to the experimental chair did not accommodate subjects larger than 110 kilograms (about 242 lb.); therefore, subjects in excess of this weight were excluded from the study.

On each subject, five anthropometric dimensions and three measures of grip strength were obtained, also noted were age and handedness. Descriptions of the anthropometric dimensions and grip strength exertions are discussed in Appendix I.

Table 2 lists age, the anthropometric dimensions, grip strength, and the handedness of the study sample as compared with the 1967 USAF anthropometric survey of flying personnel.

TABLE 2

CHARACTERISTICS OF THE STUDY SAMPLE AS COMPARED WITH THE 1967 USAF SURVEY OF FLYING PERSONNEL

			Study Sam	ple (n≈51)	
Variable	Unit	Mean	SD	99 % ile	1 % ile
Age	years	22.8	4.9	46.4	17.6
Weight	kg	75.7	11.8	108.9	52.3
Stature	cm	176.1	6.2	190.8	163.9
Sitting Height	cm	91.7	3.3	100,8	85.4
Thumb-Tip Reach	cm	81.3	4.5	93.9	71.7
Lateral Thumb Tip Reach	cm	107.1	4.9	120.0	98.1
Grip Strength I	N*	490.7	74.9	664.4	301.4
Grip Strength II	N	492.2	74.2	653.3	313.6
Grip Strength III	N	499.9	74.6	621.6	276.6
Grip Strength—Average	N	494.2	70.7	647.0	304.1
HandednessRight Left	%	92 8			
		:	1967 USAF Survey (1	Anthropometri n=2420)**	ic
Variable	Unit	Mean	SD	99%ile	1 %ile
Age	vears	20.0	6.3	45.4	22.2
Weight	kg	78.7	9.7	103.3	57.9
Stature	cm	177.3	6.2	191.9	168.3
Sitting Height	cm	93.2	3.2	100.6	86.2
Thumb-Tip Reach	cm	80.3	4.0	90.3	71.2
Lateral Thumb-Tip Reach	cm	_			
Grip Strength I	N	552.2	74.8	749.3	389.8
Grip Strength II					
Grip Strength III				_	
Grip Strength-Average		—		_	
Handedness-Right	%	89			
—Left	·	9			

*One N (Newton) equals 0.225 pounds or 0.102 kiloponds.

11

Preceding page blank 🕚

^{**}Clauser, C. E. et al., Anthropometry of Air Force Rated Officers-1967, Aerospace Medical Research Laboratory, Wright-Patterson AFB, Ohio, unpublished duta.

SECTION VI

RESULTS

1

Table 3 summarizes the means, standard deviations, and ranges for the 44 force exertions. Tables 4 - 47 deal individually with each exertion, and the following are presented for each of the force measurements: the mean, standard error of the mean, standard deviation, standard error of the standard deviation, coefficient of variation, aymmetry, kurtosis, sample size, and selected percentiles. A visual and written description for each force exertion is included. The drawings are not meant to be technically correct, only illustrative, and the reader is referred to the written description of the measurement for exact procedures and techniques. A summary table of the force components that were recorded orthogonally to the requested direction is presented at the bottom of each page.

The computations of the statistical measures follow the procedures and techniques described by Churchill (Clauser *et al.*, in press). Appendix II presents a brief discussion of the statistical procedures and the formulas used in this report.

Preceding page blank

1

•

SUMMARY TABLE OF THE 44 FORCE EXERTIONS*

	Moan	SD	Runge	See Page
Variable Name				
STICK Forward Force Backward Force, Inward Push Backward Force, Two Hand: Left Force Right Force Up Force Down Force	68.8 77.8 69.1 156.2 55.2 66.3 63.3 92.3	20.4 13.8 19.9 19.4 11.9, 14.8 14.4 25.4	27-186 48-114 30-112 100-198 28- 91 33-103 27- 87 33-181	15 16 17 18 19 20 21 22
THROTTLE (Sidearm Controller) Forward Force, Handle Vertical Forward Force, Handle Horizontal Backward Force, Handle Vertical Backward Force, Handle Horizontal Left Force Right Force Up Force Down Force	$157.7 \\ 148.2 \\ 105.0 \\ 103.0 \\ 26.1 \\ 42.6 \\ 41.8 \\ 58.5 \\ 100000000000000000000000000000000000$	34.8 30.9 16.6 16.9 9.9 9.8 13.8 15.0	45-229 61-280 46-140 54-139 12- 56 17- 64 17- 83 25- 94	28 24 25 26 27 28 29 30
COLLECTIVE Forward Force Backward Force Left Force Right Force Up Force Down Force	67.1 58.9 32.5 47.3 85.2 80.0	16.0 11.6 13.4 10.8 18.4 19.9	86- 98 23- 86 7- 71 23- 73 36-123 84-124	81 32 33 34 35 86
OVERHEAD CONTROL Forward Force Backward Force Left Force Right Force Up Force Down Force	82.5 18.6 25.9 25.2 175.5 98.6	10.5 4.7 7.6 7.3 54.1 14.6	13. 66 9. 34 18. 53 7. 42 65-308 63-134	37 38 39 40 41 42
PANEL CONTROL Forward Force Backward Force Left Force Right Force Up Force Down Force	169.8 111.8 22.8 35.0 24.2 40.4	86.3 19.6 6.7 8.2 5.5 10.1	75-250 64-165 11- 45 18- 53 18- 37 21- 75	43 44 45 46 47 48
HATCH CONTROL Forward Force Backward Force Left Foice Right Force Down Force Forward Force-45° Backward Force-45° Left Force-45° Right Force-45°	85.0 45.2 71.9 56.9 28.0 42.1 92.1 86.8 38.6 38.1	12.5 8.4 13.9 14.5 9.2 7.8 15.6 14.8 9.5 9.8	13- 60 36- 66 37- 97 30- 98 13- 46 24- 65 50-129 36-123 20- 74 21- 67	49 50 51 52 53 54 55 55 56 57 58

[•]Porce exertions reported in pounds.

TABLE 4 STICK: FORWARD FORCE

THE SUMMARY STATISTICS

Newtons		Pounds
806.3	Mean	68.8
12.7	SE (Mean)	2.9
90.8	SD	20.4
9.0	SE (SD)	2.0
Coef. of Va Symmetry Kurtosis-V Number of	ar. (%) -Veta I 'eta II 'Subj. 51	29.6 0.6 3.7

THE PERCENTILES

Newtons		Pounds
555.1	99th	124.8
446.2	95th	100.3
355.4	75th	79.9
302.1	50th	67.9
244.3	25th	54.9
161.5	5th	36.3
130.0	1st	29.2

The handle assembly is located in the centerline of the seat, 12.4 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the forward direction.

	Mean lb	SD lb	Maximum lb	Sample Size
LEFT	89.0	-	51.0	2
RIGHT	83.5	13.1	77.0	49

and the second s

STICK: BACKWARD FORCE

	THE SUMMARY STATISTICS		
	Newtons		Pounds
$\sum_{i=1}^{n}$	346.2 8.6 61.5 6.1	Mean SE (Mean) SD SE (SD)	77.8 1.9 18.8 1.4
	Coef. of Var Symmetry-V Kurtosis-Ve Number of S	(%) Veta I ta II Subj. 51	17.8 0.4 8.0
	THE	PERCENTIL	es
	Newtons		Pounds
	510.0 460:0 385.4 340.5 303.3 256.6 217.5	99th 95th 75th 60th 25th 5th 1st	114.6 108.4 86.6 76.5 68.2 57.7 48.9

The handle assembly is located in the centerline of the seat, 12.4 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the backward direction.

	Mea r. Ib	SD lb	Maximum lb	Sample Size
LEFT	33.2	11.6	59.0	48
RIGHT	38 .0	_	40.0	2

STICK: BACKWARD FORCE, INWARD PUSH

THE SUMMARY STATISTICS		
Newtone		Pounds
807.4 12.4 88.7 8.8	Mean SE (Mean) SD SE (SD)	69.1 2.8 19.9 2.0
Coef. of Var Symmetry V Kurtosis-Vet Number of S	.(%) eta I sa II Subj.δ1	28.8 0.0 2.2
THE	PERCENTIL	ES
Newtons		Pounds
502.1 454.2 373.2 308.3 241.4 160.6 134.6	99th 95th 75th 50th 25th 5th 1st	112.8 102.1 83.9 69.3 54.3 86.1 30.2
	THE SUR Newtons 807.4 12.4 88.7 8.8 Coef. of Var Symmetry-V Kurtosis-Vet Number of S THE Newtons 502.1 454.2 373.2 308.3 241.4 160.6 134.6	THE SUMMARY STAT Newtons 807.4 Mean 12.4 SE (Mean) 88.7 SD 88.7 SD 8.8 SE (SD) Coef. of Var. (%) Symmetry-Veta I Kurtosis-Veta II Number of Subj. 51 51 THE PERCENTIL Newtons 502.1 99th 502.1 99th 454.2 95th 373.2 75th 308.3 50th 241.4 25th 160.6 6th 134.6 1st 1st

The handle assembly is located in the centerline of the seat, 12.4 inches above SKP, and 13 inches forward of SRP. The handle is oriented vertically. The subject is instructed to grasp the handle, lean forward (disregarding the requirement to keep the back in contact with the back rest), swing the left elbow and wrist around so they are forward of the handle assembly, then push towards himself in the backward direction along a horizontal plane.

	Mean Ib	SD lb	Maximum lb	Sample Size
LEFT	25.2	13.3	52.0	13
RIGHT	23.2	11.0	42.0	88

STICK: BACKWARD FORCE, TWO HANDS

	THE SUMMARY STATISTICS		
	Newtons		Pounds
$\sum_{i=1}^{n}$	695.0 12.2 86.2 8.6	Mean SE (Mean) SD SE (SD)	156.2 2.7 19.4 1.9
	Coef. of Var Symmetry- Kurtosis-Ve Number of	r. (%) Veta I ta II Subj. 50	12.4 -9.2 3.1
	THI	E PERCENTIL	ES
	Newtons		Pounds
	880.0 844.6 752.7 691.3 638.5	99th 95th 75th 50th 25th	197.8 189.8 169.1 155.4 143.5
	552.1 442.9	5th 1st	124.1 99.5

The handle assembly is located in the centerline of the seat, 12.4 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it with both hands (in whatever manner is comfortable to him). The subject is instructed to exert a force (pull back) in a horizontal plane in the backward direction.

	Mean lb	SD lb	Maximum lb	Simple Size
LEFT	11.9	8.6	37.0	34
RIGHT	11.9	11.9	82.0	7

Harman and a state of the second second

ł

ł

STICK: LEFT FORCE

	Newtms	Pounds	
•	245.6 Mean 7.5 SE (Mea 58.1 SD 5.3 SE (SD	55.2 n) 1.7 11.9) 1.2	
	Coeî. of Var. (%) Symmetry-Veta I Kurtosis-Veta II Number of Subj. 50	21.6 0.4 3.5	
	THE PERCE	NTILES	
	Newtons	Pounds	
	396.6 99th 332.9 95th 276.6 75th 244.6 50th 211.2 25th 160.0 5th 129.6 1st	89.1 74.8 62.2 55.0 47.5 36.0 29.1	
	7.5 SE (Mea 53.1 SD 5.3 SE (SD Coeî. of Var. (%) Symmetry-Veta I Kurtods-Veta II Number of Subj. 50 THE PERCEI Newtons 396.6 99th 322.9 95th 276.6 76th 244.6 50th 160.0 5th 129.6 1st	n) 1. 11.) 11.) 1. 21. 0. 89. 74. 62. 55. 4 62. 55. 4 62. 55. 4 62. 55. 4 62. 55. 5. 55. 62. 29.	

The handle assembly is located in the centerline of the seat, 12.4 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the left direction.

	Moan lb	SD lb	Maximum lb	Sample Size
FORWARD	1	-	-	1
BACKWARD	38.2	15.7	81.0	50

TABLE 9 STICK: RIGHT FORCE

المركزين يوم محمد المحدار التي يو يو المراجع المراجع المالي المراجع المراجع المراجع المراجع ا لمراجع المراجع الم	THE SUMMARY STATISTICS		
	Newtons		Pounds
Ω	294.9 8.9 63.7 6.8	Mean SE (Mean) SP SE (SD)	66.3 2.0 14.3 1.4
	Coef. of Va Symmetry- Kurtosia-Ve Number of	r. (%) Veta I Subj. 51	21.6 -0.1 2.8
	тн	E PERCENTIL	es
	Newtons		Pounds
	443.1 387.5 337.5 299.4 252.1 180.9	99th 95th 75th 20th 25th	99.6 87.1 75.8 67.3 56.7 40 7
	154.2	1st	84.7

The handle assembly is located in the centerline of the seat, 12.4 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the right direction.

FORCE COMPONENTS RECORDED ORTHOGONALLY
TO THE REQUESTED DIRECTION

	Mean lò	SD lb	Maximum lb	Sample Size
FORWARD	23.2	15.5	59.0	33
BACKWARD	12.8	6.5	27.0	12

TABLE 10 STICK: UP FORCE

THE SUMMARY STATISTIC		
Newtons		Pounds
281.5 9.2 64.1 6.5	Mean SE (Mean) SD SE (SD)	63.3 2.1 14.4 1.5
Coef, of Var. Symmetry-Ve Kurtosis-Veta Number of Su	(%) eta I II abj. 49	22.8 -0.6 2.8
THE	PERCENTIL	ES
Newtons		Pounds
392.2 371.3 332.1 290.9 238.8 157.3 112.7	' 99th 95th 75th 50th 25th 5th 1st	88.1 83.5 74.6 65.4 53.7 35.4 25.3
:		

The handle assembly is located in the centerline of the seat, 12.4 inches above SRP, and 13 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a vertical plane in the up direction.

١

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	25.5		34.0	2
BACKWARD	30.9	11.8	63.0	47

FORCE COMPONENTS RECORDED ORTHOGONALLY TO THE REQUESTED DIRECTION

21

TABLE 11 STICK: DOWN FORCE

THE SU	ISTICS	
Newtons		Pounds
410.6 16.1 112.8 11.4	Mean SE (Mean) SD SE (SD)	92.3 8.6 25.4 2.6
Coef. of Van Symmetry-V Kurtosis-Ve Number of S	r. (%) Veta I ta II Subj. 49	27.5 -0.5 2.5
THE	E PERCENTILE	s
Newtons		Pounds
585.8 564.6 504.0 429.3	99th 95th 75th 50th	131.6 126.9 113.3 96.5
333.1 194.4 142.5	25th 5th 1st	74.8 43.7 32.0

The handle assembly is located in the centerline of the seat, 12.4 inches above SRP, and 13 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a vertical plane in the down direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	22.5	13.6	58.0	44
BACKWARD	9.3		18.0	3

THROTTLE (SIDEARM CONTROLLER): FORWARD FORCE, HANDLE VERTICAL

	THE SUMMARY STATISTI		
	Newtons		Pounds
\cap	701.5 21.7 155.0 15.4	Mean SE (Mean) SD SE (SD)	157.7 4.9 34.8 8.5
	Coef. of Vi	ar. (%)	22.1
	Symmetry-	-Veta I	-0.9
	Number of	Subj. 51	4.0
	тн	E PERCENTIL	ES
	Newtons		Pounds
	1060.1	99th	238.2
	928.1	95th	208.6
			180.2
	802.2	75th	100 8
	802.2 723.2 626.2	75th 50th 25th	162.5 140 7
	802.2 723.2 626.2 417.2	50th 25th 5th	162.5 140.7 98.8
	802.2 723.2 626.2 417.2 199.9	50th 25th 5th 1st	162.5 140.7 93.8 44.9

The handle assembly is located 10 inches left of SRP, 12.4 inches above SRP, and 20 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the forward direction.

	Mean Ib	SD lb	Maximum lb	Sample Sizc
LEFT	11.2	7.5	27.0	20
RIGHT	11.4	8.3	46.0	30

THROTTLE (SIDEARM CONTROLLER): FORWARD FORCE, HANDLE HORIZONTAL

	THE SUN	ISTICS	
	Newtons		Pounds
\cap	659.7 19.3 137.7 13.6	Mean SE (Mean) SD SE (SD)	148.2 4.3 30.9 8.1
No T	Coef. of Var Symmetry-V Kurtosis-Ve Number of S	. (%) Veta I ta II Subj. 51	20.9 0.1 3.7
	THE	E PERCENTIL	ES
	Newtons		Pounds
	1010.4 898.9 741.2 652.5 576.7 444.0 276.7	99th 95th 75th 50th 25th 5th 1st	227.1 202.0 166.6 146.6 129.6 99.8 62.2

The handle a pocated 10 inches left of SRP, 12.4 inches above SRP, and 20 inches forward of SRP. 'a pole is oriented in the horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a horizontal plane in the forward direction.

	Mean lb	SD lb	Maximum lb	Sample Size
UP	_	-	-	-
DOWN	39.4	15.6	75.0	51

THROTTLE (SIDEARM CONTROLLER): BACKWARD FORCE, HANDLE VERTICAL

	THE S	UMMARY STAT	ISTICS
	Newtons		Pounds
\bigcirc	467.1 10.4 74.0 7.8	Mean SE (Mean) SD SE (SD)	105.0 2.3 16.6 1.7
	Coef. of Va Symmetry Kurtosis-V Number of	ar. (%) -Veta I eta II Subj. 51	15.9 -0.3 4.7
	тн	IE PERCENTIL	ES
	Newtons		Pounds
	617.0 605.3 507.4 454.2 427.9 379.3	99th 95th 75th 50th 25th	138.6 136.0 114.0 102.1 96.2 85.2
	243.0	1st	54.6

The handle assembly is located 10 inches left of SRP, 12.4 inches above SRP, and 20 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the backward direction.

	Mean lb	SD lb	Maximum lb	Sample Size
LEFT	6.0	-	14.0	4
RIGHT	11.3	7.4	45.0	45

THROTTLE (SIDEARM CONTROLLER): BACKWARD FORCE, HANDLE HORIZONTAL

2.4

1.7 16.4

0.0

3.3

186.9

183.3

113.8

101.2

92.2

79.4

58.6

16.9

The handle assembly is located 10 inches left of SRP, 12.4 inches above SRP, and 20 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a horizontal plane in the backward direction.

	Mean lb	SD Ib	Maximum lb	Sample Size
UP	29.1	9.4	48.0	51
DOWN	-		-	

THROTTLE (SIDEARM CONTROLLER): LEFT FORCE

	Newtons		Pounds
	116.1 6.8 44.2 4.4	Mean SE (Mean) SD SE (SD)	26.1 1.4 9.9 1.0
55	Coef. of Va Symmetry- Kurtosis-Ve Number of	r. (%) Veta I sta II Subj. 50	38.1 1.4 4.6
	TH	E PERCENTIL	es
	Newtons		Pounds
	258.8 213.0 139.4 102.9 83.1 69.4 45.5	99th 95th 75th 50th 25th 5th 1st	58.2 47.9 31.8 23.1 18.7 15.6 10.2
	-		

The handle assembly is located 10 inches left of SRP, 12.4 inches above SRP, and 20 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the left direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	35.6	31.8	113.0	22
BACKWARD	22.8	16.8	64.0	22

THROTTLE (SIDEARM CONTROLLER): RIGHT FORCE

THE SUMMARY STATISTICS		
Newtons		Pounds
189.8 5.8 41.5 4.1	Mean SE (Mean) SD SE (SD)	42.6 1.3 9.8 0.9
Coef. of Va Symmetry Kurtosis-V Number of	ar. (%) -Veta I Subj. 51	21.9 0.8 3.4
тн	E PERCENTIL	ES
Newtons		Pounds
285.0 269.8 213.9 182.0 163.0 136.8 81.9	99th 95th 75th 50th 25th 5th 1st	64.0 60.6 48.1 40.9 36.6 30.7 18.4
	THE SI Newtons 189.3 5.8 41.5 4.1 Coef. of Va Symmetry Kurtosis-V Number of TH Newtons 285.0 269.8 213.9 162.0 163.0 136.8 81.9	THE SUMMARY STAT Newtons 189.3 Mean 5.8 SE (Mean) 41.5 SD 4.1 SE (SD) Coef. of Var. (%) Symmetry-Veta I Kurtosis-Veta II Number of Subj. 51 THE PERCENTIL Newtons 285.0 99th 269.8 95th 213.9 75th 163.0 25th 136.8 5th 81.9 1st

The handle assembly is located 10 inches left of SRP, 12.4 inches above SRP, and 20 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the right direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	17.3	8.7	40.0	16
BACKWARD	30.2	18.7	75.0	26

an internet in the second s

THROTTLE (SIDEARM CONTROLLER): UP FORCE

THE SUMMARY STATISTICS		
Newtons		Pounds
185.8 8.3 59.2 5.9	Mean SE (Mean) SD SE (SD)	41.8 1.9 13.3 1.3
Coef. of Va Symmetry- Kurtosis-Ve Number of	ur. (%) Veta I eta II Subj. 51	31.9 0.9 4.1
TH	E PERCENTIL	ES
Newtons		Pounds
878.7 800.9 219.0 177.6 144.2 101.1 67.1	99th 95th 75th 50th 25th 5th 1st	85.1 67.6 49.2 39.9 32.4 22.7 15.1

The handle assembly is located 10 inches left of SRP, 12.4 inches above SRP, and 20 inches forward of SRP. The handle is oriented in a horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a vertical plane in the up direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	30.3	_	39.0	3
BACKWARD	38.9	19.4	85.0	47

THROTTLE (SIDEARM CONTROLLER): DOWN FORCE

	THE SUMMARY STATISTICS		
	Newtons		Pounds
	260.1 9.4 66.9 6.6	Mean SE (Mean) SD SE (SD)	58.5 2.1 15.0 1.5
>5	Coef. of Va Symmetry-' Kurtosis-Ve Number of	r. (%) Veta I Sta II Subj. 51	25.7 0.2 3.2
	TH	E PERCENTIL	ES
	Newtons		Pounds
	432.5 382.0 308.7 255.4 213.8 155.2 99.3	99th 95th 75th 60th 25th 5th 1st	97.2 85.8 68.2 57.4 48.0 84.9 22.8

The handle assembly is located 10 inches left of SRP, 12.4 inches above SRP, and 20 inches forward of SRP. The handle is oriented in a horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a vertical plane in the down direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	38.2	20.2	86.0	47
BACKWARD	23.7		50.0	3

COLLECTIVE: FORWARD FORCE

والمستقدات المواصلة والمتحد ويرون فيستعد ويتعاد والمتعاد والمتعاد والمعاد والمتعاد والمتعاد والمتعاد والمتعاد	THE SUMMARY STATISTICS		
	Newtons		Pounds
\cap	298.8 10.0 71.4 7.1	Mean SE (Mean) SD SE (SD)	67.1 2.3 16.0 1.6
1 march	Coef. of Va Symmetry- Kurtosis-Vo Number of	ur. (%) Veta I eta II Subj. 51	23.9 0.1 2.2
	TH	E PERCENTIL	ES
	Newtons		Pounds
	438.4 419.1 352.2 296.1 242.9 184.2 160.9	99th 95th 75th 50th 25th 5th 1st	98.5 94.2 79.2 66.5 54.6 41.4 36.2

The handle assembly is located 14 inches left of SRP, 4.75 inches above SRP, and 10.3 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a horizontal plane in the forward direction.

	Mean lb	SD lb	Maximum lb	Sample Size
UP	15.5		21.0	2
DOWN	28.7	14.8	80.0	45

TABLE 21 COLLECTIVE: BACKWARD FORCE

	THE SUMMARY STATISTICS		
	Newtons		Pounds
\cap	261.9 7.2 51.5 5.1	Mean SE (Mean) SD SE (SD)	58.9 1.6 11.6 1.2
TO PAC	Coef. of Var. Symmetry-V Kurtosis-Vet Number of S	(%) eta I a II subj. 51	19.7 0.1 3.9
	THE	PERCENTIL	ES
	Newtons		Pounds
	378.8 357.9 289.7 252.9 231.8 197.3 119.0	99th 95th 75th 50th 25th 5th 1st	85.1 80.4 65.1 56.8 52.1 44.3 26.7

The handle assembly is located 14 inches left of SRP, 4.75 inches above SRP, and 10.3 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a horizontal plane in the backward direction.

	Mean lb	SD lb	Maximum lb	Sample Size
UP	39.8	17.0	100.0	47
DOWN	16.3	_	25.0	3
COLLECTIVE: LEFT FORCE

	THE SU	JMMARY STAT	ISTICS
	Newtons		Pounds
\cap	144.5 8.5 59.8 6.0	Mean SE (Mean) SD SE (SD)	32.5 1.9 13.4 1.3
in the second	Coef. of V Symmetry- Kurtosis-V Number of	ar. (%) Veta I eta II Subj. 50	41.8 0.6 3.1
	тн	E PERCENTIL	ES
	Newtons		Pounds
	315.9 256.1 181.0 137.9 101.0 57.5 32.8	99th 95th 75th 50th 25th 5th 1st	71.0 57.3 40.7 31.0 22.7 12.9 7.4

The handle assembly is located 14 inches left of SRP, 4.75 inches above SRP, and 10.3 inches forward of SRP. The handle is oriented in the horizontal sagittal plane and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the left direction.

	Mean lb	SD lb	Maximum lb	Sample Size	
UP	17.4	16.3	72.0	16	
DOWN	28.8	17.9	70.0	26	

COLLECTIVE: RIGHT FORCE

	THE SU	UMMARY STAT	ISTICS
	Newtons		Pounds
C	210.6 6.7 48.1 4.8	Mean SE (Mean) SD SE (SD)	47.8 1.5 10.8 1.1
IN A A	Coef. of Va Symmetry Kurtosia V Number of	ar. (%) Veta I eta II Subj. 51	22.8 0.2 2.8
	тн	E PERCENTIL	es
	Newtons		Pounds
	326.0 290.6 241.1 208.1 176.4 132.8 103.4	99th 95th 75th 50th 25th 5th 1st	73.8 65.3 54.2 46.8 39.6 29.9 23.2

The handle assembly is located 14 inches left of SRP, 4.75 inches above SRP, and 10.3 inches forward of SRP. The handle is oriented in the horizontal sagittal plane and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the right direction.

FORCE COMPONENTS	RECORDED	ORTHOGONALLY
TO THE REQU	UESTED DIE	RECTION

	Mean lb	SD lb	Maximum lb	Sample Size
UP	41.5	27.8	100.0	38
DOWN	18.9	17.2	53.0	10

.

· · · · · · · · · · · · · · · · · · ·	THE SUMMARY	STATISTICS
4	Newtons	Pounds
	879.2 Mea 11.5 SE (M 81.8 SE 8.1 SE (S	in 85.2 ean) 2.6) 18.4 SD) 1.8
- To T	Coef. of Var. (%) Symmetry-Veta I Kurtosis-Veta II Number of Subj. 5	21.6 -0.3 3.0
	THE PERC	ENTILES
	Newtons	Pounds
	544.6 99 510.7 95 436.3 75 380.7 50 325.3 25 236.9 5 152.7 1	th 122.4 ith 114.8 ith 98.1 ith 85.6 ith 73.1 ith 53.2 lst 34.3

The handle assembly is located 14 inches left of SRP, 4.75 inches above SRP, and 10.3 inches forward of SRP. The handle is oriented in the horizontal sagittal plane and the subject grasps it from the left. The subject is instructed to exert a force in a vertical plane in the up direction.

:	Mean Ib	SD lb	Maximum lb	Sample Size
LEFT	17.0		17.0	1
RIGHT	22.9	8.8	40.0	50

١

COLLECTIVE: DOWN FORCE

1	THE SU	MMARY STAT	ISTICS
	Newtons		Pounds
\frown	856.2 12.4	Mean SE (Mean)	80.0 2.8
	88.6	SD SE (SD)	19.9 3.0
	Coef. of Yan Symmetry-V Kurtosis-Ve	r. (%) Veta 1 ta II	24.9 -0.1 2.7
	THI	Sudj. 51 E PERCENTIL	ES
	Newtone		Pounds
	550.5	99th	123.7
	416.9	75th	93.7
	360.0	50th	80.9
	296.9	25th	66.7
	143.2	oth 1st	45.8 32.2
	•		

The handle assembly is located 14 inches left of SRP, 4.75 inches above SRP, 10.3 inches forward of SRP. The handle is oriented in the horizontal sagittal plane and the subject grasps it from the left. The subject is instructed to exert a force in a vertical plane in the down direction.

	Mean lb	SD lb	Maximum lb	Sample Size
LEFT	13.1	8.1	32.0	26
RIGHT	10.4	5.8	23.0	22

OVERHEAD CONTROL: FORWARD FORCE

	Newtons		Pounds	
	144.4 6.5 46.5 4.6	Mean SE (Mean) SD SE (SD)	82.5 1.5 10.5 1.0	
$\langle \Omega \rangle$	Coef. of Va Symmetry- Kurtosis-Ve Number of	r. (%) Veta I eta II Subj. 51	82.2 0.9 4.1	
	TH	E PERCENTIL	ES	
	Newtons		Pounds	
	293.2 230.4 170.1 139.4 113.0 78.7	99th 95th 75th 50th 25th 5th	65.9 51.8 38.2 31.3 25.4 17.7	
	57. 6	1st	12.9	

The handle assembly is located 10 inches left of SRP, 47.3 inches above SRP, and 0.0 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the back. The subject is instructed to exert a force in a horizontal plane in the forward direction.

FORCE COMPONENTS RECORDED ORTHOGONALLY	
TO THE REQUESTED DIRECTION	

	Mean lb	SD lb	Maximum lb	Sample Size
UP	32.1	25.1	121.0	26
DOWN	20.9	17.2	62.0	22

OVERHEAD CONTROL: BACKWARD FORCE

	THE SUM	IMARY STAT	ISTICS
	Newtons		Pounds
-75	82.6 2.9 20.9 2.1	Mean SE (Mean) SD SE (SD)	18.6 0.7 4.7 0.5
$\langle \Omega \rangle$	Coef. of Var Symmetry V Kurtosis-Vet Number of S	.(%) eta I a II ubj.51	25.3 0.9 4.2
	THE	PERCENTIL	ES
	Newtons		Pounds
	146.2 120.2 92.6 79.3 69.0 54.5 39.7	99th 95th 75th 50th 25th 5th 1st	32.9 27.0 20.8 17.8 15.5 12.2 8.9

The handle assembly is located 10 inches left of SRP, 47.3 inches above SRP, and 0.0 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the back. The subject is instructed to exert a force in a horizontal plane in the backward direction.

	Mean lb	SD lb	Maximum lb	Sample Size
UP	8.5	4.9	20.0	10
DOWN	21.7	18.0	78.0	39

00

.....

ageneration of the second second

OVERHEAD CONTROL: LEFT FORCE

	THE SUMMARY STATISTICS		
	Newtons		Pounds
	115.2 4.8 33.9 3.4	Mean SE (Mean) SD SE (SD)	25.9 1.1 7.6 0.8
	Coef. of Va Symmetry- Kurtosis-V Number of	ur. (%) -Veta I eta II Subj. 50	29.5 1.0 4.7
	TH	IE PERCENTIL	ES
	Newtons		Pounds
	226.8 171.2	99th 95th	50.9 38.5
	112.4	50th	29.5
	92.9 66.2	25th 5th	20.9 14.9
J	59.4	1st	13.4

The handle assembly is located 10 inches left of SRP, 47.3 inches above SRP, and 0.0 inches forward of SRP. The handle is oriented in the horizontal sagittal plane and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the left direction.

	Mean lb	SD lb	Maximum lb	Sample Size
UP	14.2	10.5	44.0	22
DOWN	10.7	5.9	22.0	12

OVERHEAD CONTROL: RIGHT FORCE

	THE SUMMARY STATISTICS		
+	Newtons		Pounds
7	112.2 4.6 32.6 3.2	Mean SE (Mean) SD SE (SD)	25.2 1.0 7.3 0.7
	Coef. of Va Symmetry- Kurtosis-Ve Number of	r. (%) Veta I sta II Subj. 51	29.1 0.2 3.0
	TH	E PERCENTIL	ES
	Newtons		Pounds
	190.4 172.9	99th 95th 75th	42.8 38.9
	108.6	50th	29.9 24.4
	89.8 64.7	25th	20.2
	04.7 33.9	lst	14.6 7.6

The handle assembly is located 10 inches left of SRP, 47.3 inches above SRP, and 0.0 inches forward of SRP. The handle is oriented in the horizontal sagittal plane and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the right direction.

	Me an lb	SD lb	Maximum lb	Sample Size
UP	11.4	8.2	26.0	10
DOWN	33.5	20.7	88.0	38

OVERHEAD CONTROL: UP FORCE

The handle assembly is located 10 inches left of SRP, 47.3 inches above SRP, and 0.0 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the back. The subject is instructed to exert a force in a vertical plane in the up direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	30.0	16.0	77.0	50
BACKWARD	21.0		21.0	1

OVERHEAD CONTROL: DOWN FORCE

The handle assembly is located 10 inches left of SRI', 47.3 inches above SRP, and 0.0 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the back. The subject is instructed to exert a force in a vertical plane in the down direction.

	Mea n lb	SD lb	Maximum lb	Sample Size
FORWARD	8.6	5.4	21.0	85
BACKWARD	8.1	6.8	21.0	10

PANEL CONTROL: FORWARD FORCE

THE SUMMARY STATISTIC		
Newtons		Pour
755.7 22.6 161.6 16.0 Coef. of Va Symmetry- Kurtosis-Ve Number of	Mean SE (Mean) SD SE (SD) r. (%) Veta I ta II Subi. 51	16 3 2
TH) Newtons	E PERCENTIL	ES Pous
1090.6 977.0 867.0 777.9 661.3 459.2 331.7	99th 95th 75th 50th 25th 5th 1st	24 21 19 17 14 10 7

.

·····

n8 Pounds 169.8 Mean SE (Mean) 5.1 SD 36.3 SE (SD) 8.6 of Var. (%) 21.4 etry-Veta I -0.5 is-Veta II 3.2 er of Subj. 51

THE PERCENTILES

Newtons		Pounds
1090.6	99th	245.1
977.0	95th	219.6
867.0	75th	194.8
777.9	50th	174.8
661.3	25th	148.6
459.2	5th	103.2
321.7	1st	74.5

The handle assembly is located 10 inches left of SRP, 23 inches above SRP, and 24.7 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the forward direction.

	Mean lb	SD lb	Maximum lb	Sample Size
LEFT	16.3	8.8	42.0	84
RIGHT	10.7	10.9	42.0	12

PANEL CONTROL: BACKWARD FORCE

THE S	UMMARY STAT	ISTICS
Newtons		Pounds
497.4	Mean	111.8
12.2	SE (Mean)	2.7
87.0	SD	19.6
8.6	SE (SD)	1.9
Coef. of V	ar. (%)	17.5
Symmetry	-Veta I	-0.1
Kurtosis-V	eta II	3.4
Number of	Subj. 51	
TH	E PERCENTIL	ES
Newtons		Pounds
722.9	99th	162.4
631.9	95th	142.0
552.1	75th	124.1
501.9	50th	112.8
443.0	25th	99.6
341.9	5th	76.8
272.9	1st	61.3
-		

The handle assembly is located 10 inches left of SRP, 23 inches above SRP, and 24.7 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the backward direction.

	Mean lb	SD lb	Maximum lb	Sample Size
LEFT	6.0	3.2	12.0	9
RIGHT	9.5	6.0	28.0	40

PANEL CONTROL: LEFT FORCE

	THE SU	JMMARY STAT	ISTICS
	Newtons		Pounds
	101.6 4.2 29.8 3.0	Mean SE (Mean) SD SE (SD)	22.8 1.0 6.7 0.7
	Coef. of Va Symmetry Kurtosis-V Number of	ur. (%) Veta I eta II Subj. 50	29.4 1.2 4.6
A A A A A A A A A A A A A A A A A A A	TH	E PERCENTIL	ES
	Newtons		Pounds
	201.2 159.6 115.7 95.4 81.2 63.5 45.3	99th 95th 75th 50th 25th 5th 1st	45.2 35.9 26.0 21.4 18.2 14.3 10.2

The handle assembly is located 10 inches left of SRP, 23 inches above SRP, and 24.7 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left. The subject is instructed to exert a force in a horizontal plane in the left direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	20.7	21.0	84.0	17
BACKWARD	26.8	21.4	74.0	26

ł

PANEL CONTROL: RIGHT FORCE

	THE SU	MMARY STAT	ISTICS
	Newtons		Poune
\bigcap	155.9	Mean	85.
	5.1	SE (Mean)	1.
	86.7	SD	8.
	3.6	SE (SD)	Q .
アンプ	Coef. of Va	ır. (%)	23.
	Symmetry-	Veta I	0.
	Kurtosis-V	eta II	2.
	Number of	Subj. 51	
	тн	E PERCENTIL	ES
	Newtons		Pouna
	238.1	99th	53.
	221.9	95th	49.
	180.9	75th	40.
	152.6	50th	84 .
	129.0	25 th	29.
	101.6	5th	22 .
	79.4	lst	17.

The handle assembly is located 10 inches left of SRP, 23 inches above SRP, and 24.7 inches forward of SRP. The handle is oriented vertically and the subject grasps in from the left. The subject is instructed to exert a force in a horizontal plane in the right direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	22.4	80.4	128.0	17
BACKWARD	24.9	17.8	75.0	27

- -

- -

• · •••• · •

PANEL CONTROL: UP FORCE

Α	THE SU	MMARY STAT	ISTICS
	Newtons		Pounds
	107.5 3.4 24.8 2.4	Mean SE (Mean) SD SE (SD)	24.2 0.8 5.5 0.6
	Coef. of Val Symmetry- Kurtosis-Ve Number of	r. (%) Veta I sta II Subj. 50	22.6 0.3 2.5
	TH	E PERCENTIL	ES
	Newtons		Pounds
	161.5 149.0 123.4 105.5 89.9 70.7 56.7	99th 95th 75th 50th 25th 5th 1st	36.3 33.5 27.7 23.7 20.2 15.9 12.7

The handle assembly is located 10 inches left of SRP, 23 inches above SRP, and 24.7 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grasps it from the top. The subject is instructed to exert a force in a vertical plane in the up direction.

	Mean lb	SD lb	Maximum lb	Samplc Size
FORWARD	26.7	21.2	69.0	14
BACKWARD	31 .0	25.7	131.0	29

PANEL CONTROL: DOWN FORCE

THE SU	JMMARY STAT	TISTICS
Newtons		Pounds
180.0 6.4 44.9 4.5	Mean SE (Mean) SD SE (SD)	40.4 1.4 10.1 1.0
Coef. of Va Symmetry- Kurtosis-Vo Number of	r. (%) Veta I eta II Subj. 50	25.0 0.9 4.4
ТН	E PERCENTIL	ES
Newtons		Pounds
326.7 254.9 200.7 175.9 151.1	99th 95th 75th 50th 25th	78.4 57.3 45.1 39.5 34.1
115.3 94.1	5th 1st	25.9 21.2

The handle assembly is located 10 inches left of SRP, 23 inches above SRP, and 24.7 inches forward of SRP. The handle is oriented in the horizontal frontal plane and the subject grass it from the top. The subject is instructed to exert a force in a vertical plane in the down direction.

	Mean Ib	SD lb	Maximum lb	Sample Size	
FORWARD	30.6	24.7	96.0	18	
BACKWARD	22.3	13.6	59.0	24	

HATCH CONTROL: FORWARD FORCE

يهيرونها فيترجزه وخذا المستحدة بتستخداج الركي كالبركي كالمركزيون المركوب الألائلة المنافع	THE SUMMARY STAT		ISTICS
	Newtons		Pounds
	155.7	Mean	35.0
	7.8	SE (Mean)	1.7
	55.4	SD	12.5
	5.5	SE (SD)	1.2
	Coef, of Var.	(%)	35.6
	Symmetry V	'eta I	0.2
	Kurtosis-Vet	a II	2.3
1 Las	Number of S	ubj. 51	
1.200			
	THE THE	PERCENTIL	ES
	THE Newtons	PERCENTIL	ES Pounds
	THE Newtons 269.0	99th	ES Pounds 60.4
	THE Newtons 269.0 252.6	99th 95th	ES Pounds . 60.4 . 56.8
	THE Newtons 269.0 252.6 195.8	99th 95th 75th	ES Pounds 60.4 56.8 44.0
	THE Newtons 269.0 252.6 195.8 151.4	99th 95th 75th 50th	ES Pounds 60.4 56.8 44.0 34.0
	THE Newtons 269.0 252.6 195.8 151.4 112.4	99th 95th 75th 50th 25th	ES Pounds 60.4 56.8 44.0 34.0 25.3
	THE Newtons 269.0 252.6 195.8 151.4 112.4 71.9	99th 95th 75th 50th 25th 5th	ES Pounds 60.4 56.8 44.0 34.0 25.3 16.2
	THE Newtons 269.0 252.6 195.8 151.4 112.4 71.9 52.4	99th 95th 75th 50th 25th 5th 1st	ES Pounds 60.4 56.8 44.0 34.0 25.3 16.2 11.8
	THE Newtons 269.0 252.6 195.8 151.4 112.4 71.9 52.4	99th 95th 75th 50th 25th 5th 1st	ES Pounds 60.4 56.8 44.0 34.0 25.3 16.2 11.8

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left-front. The subject is instructed to exert a force in a horizontal plane in the forward direction.

FORCE COMPONENTS RECORDED ORTHOGONALLY TO THE REQUESTED DIRECTION

	Mean lb	SD lb	Maximum lb	Sample Size
LEFT	5.1	1.8	8.0	11
RIGHT	14.9	13.6	57.0	34

49

HATCH CONTROL: BACKWARD FORCE

	Summers of the second	101100
Newtons	i	Pou nds
201.1 5.2 37.4 3.7	Mean SE (Mean) SD SE (SD)	45.2 1.2 8.4 0.8
Coef. of Va Symmetry- Kurtosis-Va Number of	ar. (%) Veta I eta II Subj. 51	18.6 0.3 2.8

THE SUMMARY STATISTICS

THE PERCENTILES .

	Pounds
99th	67.3
95th	59.9
75th	50.8
50th	44.8
25th	39.0
Бth	32.1
1st	29.2
	99th 95th 75th 50th 25th 5th 1st

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left-front. The subject is instructed to exert a force in a horizontal plane in the backward direction.

	Mean ib	SD lb	Maximum lb	Sample Size
LEFT	33.0	15.1	67.0	47
RIGHT	19.3		45.0	8

. . . .

.

HATCH CONTROL: LEFT FORCE

	THE SU	MMARY STAT	ISTICS
	Newtons		Pounds
	820.1 8.7 62.0 6.1	Mean SE (Mean) SD SE (SD)	71.9 2.0 13.9 1.4
27	Coef. of Var Symmetry- Kurtosis-Ve Number of S	r. (%) Veta I ta II Subj. 51	19.4 -0.4 3.1
	THI	E PERCENTIL	ES
	Newtons		Pounds
	438.1 415.9 363.2 321.7 279.2	99th 95th 75th 50th 25th	98.4 93.5 81.6 72.3 62.7
	211.8 151.3	ist 1st	47.6 84.0

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left-front. The subject is instructed to exert a force in a horizontal plane in the left direction.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	17.0	-	27.0	2
BACKWARD	21.8	10.8	47.0	49

يوافقني بتيوم الاعالك فيمات الإراميكة بمنهاك وموك

1. and the state of the state o

HATCH CONTROL: RIGHT FORCE

	THE SU	JMMARY STAT	ISTICS
	Newtons		Pounds
	253.1	Mean	56.9
	9.0	SE (Mean)	2.0
+ 	64.6	SD SD (SD)	14.5
	0.4	2E (2D)	1.4
	Coef. of Va	ur. (%)	25.5
	Symmetry	Veta I	0.3
	Kurtosis-V	eta II	2.7
	Number of	Subj. 51	
122	ТН	E PERCENTIL	ES
	Newtons		Pounds
	414.2	99th	93.1
	366.4	95th	82.3
	297.1	75th	66.8
	249.5	50th	56.1
	204.8	25th	46 .0
	153.4	5th	34.5
	134.0	lst	30.1

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left-front. The subject is instructed to exert a force in a horizontal plane in the right direction.

	Mean lb	SD lb	Maximum lb	Sample Size	
FORWARD	23.2	10.1	45.0	42	
BACKWARD	12.5		20.0	4	

TABLE 42 HATCH CONTROL: UP FORCE

the second s

المتريقة والمترية المتحد المتركب والمراجعة والمتركب والمتحد والمتركبين والمتحد والمتحدين	THE SU	MMARY STAT	ISTICS
	Newtons		Pounds
	124.8 5.7 40.9 4.1	Mean SE (Mean) SD SE (SD)	28.0 1.3 9.2 0.9
75Sy	Coef. of Var. Symmetry-V Kurtosis-Vet Number of S	.(%) eta I a II ubj.51	32.8 0.3 2.0
	THE THE	PERCENTIL	ES
har	Newtons		Pounds
	202.4 196.8 156.0 121.7 91.8 64.3 56.1	99th 95th 75th 50th 25th 5th 1st	45.5 44.2 35.1 27.3 20.6 14.5 12.6

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented horizontally and midway between a frontai and a sagittal orientation (accomplished by rotating the handle 45° clockwise from the horizontal frontal orientation). The subject grasps it from the top. The subject is instructed to exert a force in a vertical plane in the up direction.

Å,

	Mean Ib	SD lb	Maximum lb	Sample Size
FORWARD	28.5	16.8	61.0	12
BACKWARD	27.9	15.8	62.0	36

HATCH CONTROL: DOWN FORCE

	THE SUN	MARY STAT	ISTICS
	Newtons		Pounds
	187.3 4.8 34.0 3.4	Mean SE (Mean) SD SE (SD)	42.1 1.1 7.6 0.8
75Sy	Coef. of Var. Symmetry-V Kurtosis-Vet Number of S	(%) eta I a II ubj. 51	18.1 0.1 3.6
1 and 1	THE	PERCENTIL	ES
	Newtons		Pounds
	278.7 234.5 207.6 190.6 166.4 124.4 106.8	99th 95th 75th 50th 25th 5th 1st	62.6 52. 46.7 42.8 87.4 28.0 24.0

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented horizontally and midway between a frontal and a sagittal orientation (accomplished by rotating the handle 45° clockwise from the horizontal frontal orientation). The subject grasps it from the top. The subject is instructed to exert a force in a vertical plane in the down direction.

	Mean lb	SD lb	Maximum lb	Sample Size	
FORWARD	15.1	7.6	29.0	18	
BACKWARD	22.7	14.2	60.0	88	

HATCH CONTROL: FORWARD FORCE (ROTATED 45° CLOCKWISE)

|--|

- .

THE S	UMMARY STAT	ISTICS
Newtons		Pounds
410.0 9.7 69.4 6.9	Mean SE (Mean) SD SE (SD)	92.1 2.2 15.6 1.6
Coef. of V Symmetry Kurtosis-V Number of	ar. (%) Veta I Veta II f Subj. 51	16.9 -0.8 3.6

OTTO OTTAGE A DAT OF A PROPERTO

THE PERCENTILES

Newtons		Pounds
566.6	99th	127.3
514.0	95th	115.5
453.4	75th	101.9
412.3	50th	92.7
366.0	25th	82.3
283.1	5th	63.6
210. 6	1st	47.3

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left-front. The subject is instructed to exert a force in a horizontal plane in a direction which extends out at an angle of 45° clockwise from forward.

	Mean lb	SD lb	Maximum lb	Sample Size
LEFT	4.9	2.9	12.0	9
RIGHT	10.4	5.3	22.0	37

HATCH CONTROL: BACKWARD FORCE (ROTATED 45° CLOCKWISE)

No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Ki No. Sy Sy Ki No. Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy Sy		
S S S S S S S S S S S S S S S S S S S		Ne
Construction of the second sec		88
Ca Sy Ki		
CA SU		e
KN N		Co
N N		- Syl Ku
	13	Nu
	abit	
		No
		146
		50
		42
3		38
9		30
		29

THE S	UMMARY STAT	ISTICS
Newtons		Pounds
386.0 9.2 65.9 6.5	Mean SE (Mean) SD SE (SD)	86.8 2.1 14.8 1.5
Coef. of Va Symmetry Kurtosis-V Number of	ar. (%) Veta I 'eta II Subj. 51	17.1 -0.3 4.5

THE PERCENTILES

Newtons		Pounds
537.7	99th	120.8
501.1	95th	112.6
422.9	75th	95.0
380.6	50th	85.5
351.3	25th	78.9
295.3	5th	66.4
194.2	lst	43.6

Ň

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left-front. The subject is instructed to exert a force in a horizontal plane in a direction which extends out at an angle 45° clockwise from backward.

	Mean Ib	SD lb	Maximum lb	Sample Size
LEFT	19.4	6.9	84.0	46
RIGHT	9.5		17.0	2

HATCH CONTROL: LEFT FORCE (ROTATED 45° CLOCKWISE)

1	THE SU	UMMARY STAT	ISTICS
	Newtons		Pounds
	171.5 5.9 42.2 4.2	Mean SE (Mean) SD SE (SD)	38.6 1.3 9.5 0.9
	Coef. of Va Symmetry Kurtosis-V Number of	ar. (%) -Veta I Jeta II Subj. 51	24.6 1.0 5.8
	TH	E PERCENTIL	ES
	Newtons		Pounds
	331.0 241.4 190.6 170.8 147.1 105.3 87.7	99th 95th 75th 50th 25th 5th 1st	74.4 54.2 42.8 38.4 33.1 28.7 19.7

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left-front. The subject is instructed to exert a force in a horizontal plane in a direction which extends out at an angle 45° clockwise from left.

	Mean lb	SD lb	Maximum lb	Sample Size
FORWARD	5.0		7.0	2
BACKWARD	25.6	14.6	67.0	44

And a state of a second state of a

HATCH CONTROL: RIGHT FORCE (ROTATED 45° CLOCKWISE)

	THE SU	MMARY STAT	ISTICS
	Newtons		Pounds
3	169.5 6.1 48.8 4.8	Mean SE (Mean) SD SE (SD)	88.1 1.4 9.8 1.0
	Coef. of Var Symmetry-V Kurtosis-Ve Number of S	r. (%) Veta I ta II Subj. 51	25.8 0.5 2.9
	THE	E PERCENTIL	ES
	Newtons		Pounds
	289.5 245.2 196.7 166.2 137.3 104.4 97.6	99th 95th 75th 50th 25th 5th 1st	65.1 55.1 44.2 37.4 30.8 23.5 21.9

The handle assembly is located 13 inches right of SRP, 23 inches above SRP, and 13 inches forward of SRP. The handle is oriented vertically and the subject grasps it from the left-front. The subject is instructed to exert a force in a horizontal plane in a direction which extends out at an angle 45° clockwise from right.

	Mean lb	SD lb	Maximum Ib	Sample Size
FORWARD	22.7	15.0	75.0	27
BACKWARD	11.1	8.9	24.0	16

SECTION VII

DISCUSSION OF THE RESULTS

Comparison with the Results of Other Studies

The data presented in this study deal with maximal ("peak") forces attainable in simulated aircraft control locations. Studies by Hunsicker (1955, 1957) and Watt (1968) are similar to this study in concept; however, their data are not comparable for the following reasons:

- Hunsicker's maximal force was achieved by taking three readings of three force components (X, Y, and Z directions of which one was the requested direction) during a 5-second exertion period. The resultant forces were calculated and the largest reported.
- Hunsicker had two positions (elbow flexion of 120° and 180°) that were somewhat similar in location to two positions examined in this study (Throttle and Panel Control). The positions Hunsicker examined were designed to achieve specific degrees of elbow flexion on the subjects, while the positions in this study were concerned with being a specific distance from SRP, regardless of the elbow flexion angle. Since the criteria that determine the positions for the two studies were different, it is not safe to assume they supply comparable data.
- Watt did not state clearly what type of maximal force he reported. Kroemer and Howard (1970) showed that under certain conditions, substantially different "maximal" forces can be extracted from the same force curves.
- Watt studied a stick-type control located "20 inches from SRP." Watt's stick was located approximately 35% farther from SRP than the stick in this study. Such a difference in location brings about significant biomechanical differences and results in different force data.

Effects of Handle Location and Exertion Direction on the Magnitude of Force

Depending on the location of the handle and on the requested direction of the force to be exerted, the amounts of force recorded vary greatly. Generally, low forces were observed in directions about perpendicular to the line from the subject's left shoulder to the handle, especially if the control location required extension of the arm. Rather large forces could be exerted approximately along the line between the shoulder and handle, especially if the extended arm could be locked between the opposing surfaces of the seat and handle. In that position a toggle effect was possible that allowed very high forces; see, for example, Panel Control, Forward Force and Overhead Control, Up Force.

Even for a given location of the handle, the forces measured in different directions can vary greatly. For example, the Up Force at the Overhead Control is extremely large, while the Backward Force exerted at the same control is among the smallest observed. This shows that no control location can be generally labeled as being well (or badly) suited for large force exertions without specifying the direction of force exertion.

Component Forces

Tables 4 through 47 list, in addition to the forces exerted in the requested direction, the forces recorded in orthogonal directions. These components do not necessarily constitute the largest possible orthogonal forces for two reasons: (1) the subjects were not controlled with respect to the amount of orthogonal forces exerted, and (2) out of a multitude of directions "orthogonal" to the requested direction, only selected ones were monitored.

While it cannot be claimed that maximal possible components were observed, the magnitude of such component forces recorded in a number of cases reaches or exceeds the amount of force exerted in the requested direction (e.g., Throttle, Left; Overhead Control, Forward; Overhead Control, Backward; Overhead Control, Right; Panel Control, Left; Panel Control, Up; Hatch Control, Up).

Relatively large forces in "undesired" directions seem to occur mainly if only rather

small forces could be exerted in the requested directions. Here, the muscles of the operator contract under mechanically disadvantageous conditions with respect to the requested output while exertions in orthogonal directions may be more effective (e.g., Panel Control, Left, as compared to Fanel Control, Forward and Backward).

Even without further discussion of biomechanical implications it should be clear to the designer that he may have to consider rather large forces being applied to controls in directions different from the direction of primary operation.

Mode of Operation

Backward force in the Stick position was exerted in three different ways: in a onehanded pull, in a one-handed inward push where the elbow was swung forward and the operator pushed towards his trunk, and in a two-handed pull. Both one-handed exertions yielded approximately the same values, although the inward push was numerically somewhat weaker than the pull. The two-handed pull resulted in substantially larger forces recorded. While this result does not substantiate the claim sometimes heard that the inward push allows larger "aft-force at the stick" in critical flight maneuvers, it does support the reports of pilots that "pulling back with both hands" allows larger forces at the stick in the full aft positions than one-handed pulls. The substantial increases in force while using two hands instead of one hand are in accordance with gains found by Watt (1963) and by Hertzberg (reported in Damon, Stoudt, and McFarland, 1966, pp. 223-225). The increases generally range from one-third to three-fourths.

At the Throttle (Sidearm Controller), Forward as well as Backward forces were exerted at the handle, which was oriented vertically as well as horizontally. The magnitude of forces exertable in each direction did not seem to depend significantly on the handle orientation used.

Correlations Among Measurements

In general, the correlations among forces as well as between forces and anthropometric variables are rather low, as indicated in Appendices III and IV. Among the force measurements only a few high correlations were observed.

On the Stick, the Backward, two-hand exertion correlation was high (0.79) with the Backward, one-hand exertion. At the same time, the Backward, inward push correlation was low with both the Backward, one-hand pull and the Backward, two-hand pull (0.24 and 0.28 respectively).

On the Throttle (Sidearm Controller), the two methods of Forward and Backward exertion (handle vertical and horizontal) correlated highly. The two forward forces correlated at 0.73 while the backward forces reached 0.92, the highest correlation found.

Only seventeen exertion pairs had coefficients of correlation of 0.70 or better. This is a small fraction of the total number of exertion pairs (946) and indicates that correlations are not very useful in predicting force capabilities. If information is desired on forces exertable in locations or directions other than those previously reported, the information generally has to be gathered experimentally rather than computed from other force data.

Anthropometric and strength measurement correlation coefficients also yielded low values. A similar lack of high correlation coefficients among measurements of strength and anthropometric variables has been shown in earlier publications (Laubach and Mc-Conville, 1966 and 1969; Kroemer and Robinson 1971).

SECTION VIII

SUMMARY AND CONCLUSIONS

This report contains experimental data on the maximal static forces that male subjects (n=51) could exert at six locations of hand-operated aircraft controls, in two vertical and four to eight horizontal directions.

The results show that the amount of force exertable depends decidedly on the location of the aircraft control and on the directions of force exertion. None of the six control locations is equally or uniformly suited for exertions of very large forces in all directions. Similarly, none of the directions of force exertion used in this study allows application of very large forces in all control locations.

In all of the locations, smaller forces were generally exerted in directions perpendicular to a line passing from the handle location to the shoulder of the arm used, while larger forces were usually recorded in directions along that line.

Correlations among forces and anthropometric dimensions were generally too low to have practical prediction value.

The force data apply to the static condition, in which muscles are contracted isometrically, i.e., without changes in length. In this condition, no motion takes place between the operator and the control to which he applies force. Hence the designer is cautioned against the indiscriminate use of data on static muscle strength for dynamic work. However, static force data may be used for conservative estimates of the "break-away force" to be applied initially to an object to set it in motion. They are also of value if a force must be sustained over a period of time, and may (with caution) be applied to very slow motions (Kroemer 1970).

Forty-four individual data pages (tables 4-47) show in detail selected descriptive statistics for each of the 44 force exertion measurements. The magnitude and direction of force components perpendicular to the requested direction are also presented. These data should aid the design engineer in the selection and arrangement of primary aircraft controls.

APPENDIX I

DESCRIPTIONS OF ANTHROPOMETRIC MEASUREMENTS AND GRIP STRENGTH

Weight—The subject, lightly clad, removes his shoes and heavy contents of pockets and steps on the scale. The scale is read to the nearest half kilogram.

Stature—Shoes removed, the subject stands erect looking directly forward (head oriented in the Frankfort plane). With the anthropometer arm firmly touching the scalp, measure the vertical distance from the standing surface to the top of the head.

Sitting Height—Subject sits erect looking directly forward (head oriented in Frankfort plane). With the anthropometer arm firmly touching the scalp, measure the vertical distance from the sitting surface to the top of the head.

Thumb-Tip Reach—Subject stands erect with heels, buttocks, shoulder blades and head in contact with a vertical surface. His right arm is extended forward and perpendicular to the vertical surface, the tip of his index finger touching the tip of the extended thumb, the thumb in the plane of the extended arm. Using the anthropometer, measure the horizontal distance from the vertical surface to the tip of the thumb.

Lateral Thumb-Tip Reach—Subject stands erect with his side towards a vertical surface, his left shoulder touching the wall. His right arm is extended laterally and perpendicular to the vertical surface, the tip of his index finger touching the tip of the extended thumb, the thumb in the plane of the extended arm. Using the anthropometer, measure the horizontal distance from the vertical surface to the tip of the thumb.

Grip Strength—Subject stands relaxed. He is instructed to place the Smedley dynamometer in his preferred hand, adjust the grip width to suit himself and squeeze the dynamometer as hard as possible. The peak force achieved is read to the nearest kilopond. Three trials are administered with approximately 2 minutes between trials.

APPENDIX II

STATISTICAL PROCEDURES AND TERMINOLOGY

The statistical measures selected to summarize the experimental data were chosen as the ones which we hope will provide most potential users with the maximum of useful information.

Briefly described, these statistics are:

The arithmetic mean. This is the most common of the averages and is computed as the sum of the values divided by the number of values. In formula, the mean equals

$$\overline{\mathbf{x}} = \frac{\mathbf{x}\mathbf{x}}{\mathbf{n}}$$

where Σ is the summation operator, x represents the individual values, and n is the number of values. The mean is designated by \bar{x} or mean in this study.

The standard deviation. The standard deviation is the basic measure of variability. If most of a set of data cluster close to their mean value, the standard deviation will be small. If, on the other hand, many of the data are either much smaller or much larger than the mean, the standard deviation will be large. By definition, the standard deviation is the square root of the average (i.e., arithmetic mean) of the squared deviations from the mean value. In formula, the standard deviation equals

$$SD = \sqrt{\Sigma (x - \bar{x})^2/n}$$

where Σ is the sum nation operator, x represents the individuals values, \overline{x} their arithmetic mean, and n the number of values.

A useful way of conceptualizing the standard deviation is to consider the middle twothirds of a set of data such as the values of stature. The smallest value in this middle twothirds will be about one standard deviation below the mean value and the largest value in this set will be roughly equal to the mean value plus one standard deviation. Similarly, the middle 95 percent of the data will have values ranging from approximately two standard deviations below the mean to two standard deviations above it. Almost all of them will fall within the range from three standard deviations below the mean to three standard deviations above it. The standard deviation is designated by SD in this study.

The standard errors. All statistics computed from a sample of data are subject to the effects of sampling error. When a sample has been selected by a random or other probability sampling process, it is often possible to estimate the magnitude of the sampling error. For many statistics, this estimate takes the form of the standard error of that statistic. The standard error is a standard deviation type statistic and is such that, were a large number of samples of data selected in the same way from the same population, about two-thirds of the samples would have means (or standard deviations or percentiles or whatever) with values which he within a standard error of the corresponding population statistic, 95% within two standard errors, and so forth. Hence, it is conventional to suppose, when dealing with the statistics computed from a single sample, that the population statistics may well be within a standard error—up or down—of the corresponding sample statistics, and that it is rather likely that they are within two standard errors.

Each statistic has its own standard error, the value of which depends on the statistic, on the sample size, and, often, on the standard deviation of the data. The standard errors of the most common statistics (except that of the range) are, for the large samples inversely proportional in size to the square root of the sample size.

For each variable, the standard error of the mean $(= SD/\sqrt{n})$ and that of the standard deviation $(= SD/\sqrt{2n})$ are listed. The standard errors of the other statistics reported on here can be determined from the following formulas:

Statistic	Standard Error
50th percentile	1.3 SE of the mean
25th & 75th percentiles	1.4 SE of the mean
5th & 95th percentiles	2.1 SE of the mean
1st & 99th percentiles	3.7 SE of the mean
Coefficient of Variation	$V/\sqrt{2n}$
Veta I	$\sqrt{6/n}$
Veta II	$\sqrt{24/n}$

í.

The standard error of the mean is designated as SE(Mean) and the standard error of the standard deviation is designated as SE(SD).

The coefficient of variation. This statistic is a restatement of the standard deviation as a percent of the mean, and it is usually denoted by the letter V. Thus,

V = 100 SD/x

Veta 1—a measure of symmetry. The statistic β , is based on the fact that in a symmetric distribution every value lying a given distance above the mean will be matched by a value lying an equal distance below the mean, so that the cubes of the deviations from the mean—half negative and half positive—will add to zero. Although the converse of this fact is by no means true—a zero sum of the cubed deviations in no way implies a symmetric distribution—the size of this sum when properly adjusted is often considered a useful indication of whether a set of data is unsymmetrically distributed and, if so, how baciy.

Veta I is computed from the sum of the cubed deviations by dividing it by the sample size and the cube of the standard deviation, producing a dimensionless statistic:

$$\beta_1 = \frac{\Sigma (x - \overline{x})^3}{n \cdot SD^3}$$

Veta II—a measure of kurtosis. The statistic β_2 is similarly computed from the fourth powers of the deviations:

$$\beta_2 = \frac{\Sigma (x - \overline{x})^4}{n \cdot SD^4}$$

The interpretation of β_2 is not obvious; its major value, along with β_1 is that its value provides a basis for judging the level of agreement between the normal distribution and the actual distribution of the data.

The normal distribution values for β_1 and β_2 are 0 and 3.

When we have occasion to spell out the symbol ' β ' we have used 'Veta' in accordance with contemporary Greek pronunciation.

The range. The range is simply the maximum and minimum scores.

The percentiles. This group of statistics belongs to a class of measures designated as "measures of order or position". These measures can be thought of as being obtained by arranging the data in order from the smallest value to the largest one and then observing the value of the datum which lies at a specified position in the array.

Perhaps the most useful of these statistics are the percentiles. The 99 percentiles ranging from the 1st to the 99th—are the values at the points which separate consecutive blocks or units of 1% of the data in the ordered array. The first percentile is the value which separates the smallest 1% of the data from the 99% of the data with larger values; the fifth percentile separates the smallest 5% from the larger 95% and so on.

The percentiles were computed using the textbook method—that is, the K-th raw percentile, P (K), is computed by locating the first interval in the frequency table in which the cumulative percent frequency equals or exceeds K%:

$$P(K) = LL + \frac{K - CPF(J-1)}{CPF(J) - CPF(J-1)} WID$$

where LL is the lower limit of this interval CPF(J) the cumulative percent frequency including this interval, CPF(J-1) the cumulative percent frequency up to but not including this interval, and WID is the interval width.

The seven computed percentiles were then smoothed by a process designed to simulate plotting them on normal probability graph paper and drawing a smooth line through the set of points. What is actually done is to assign an 'X-value' to each raw percentile equal to the corresponding deviate of the normal distribution, fit a fourth degree polynomial to these points, and read the smoothed values from this polynomial. Because of the smoothing process it is possible for the first and ninty-ninth percentiles to exceed the range of the data (e.g., see Overhead Control: Up Force—

> 1% ile = 63.6 lbs. 99% 'le = 314.4 lbs range = 65 lbs to 308 lbs).

The correlation coefficients. The correlation coefficient describes the degree of relationship between two or more variables. The most common statistical measure of such relationships is the Pearsonian product moment correlation coefficient (usually designated by the letter "r"). The correlation coefficient varies, in numerical value, from 0.0 to 1.0. Values of 0.0 indicate no relationship and those of 1.0 indicate perfect relationships. Positive values of these coefficients indicate that large values of one member of a pair of variables tend to occur simultaneously with large values of the other, and that small values of one tend to occur along with small values of the outer. Negative values indicate the reverse: small values of one variable being associated, in general, with large values of the other. The degree of association is independent of the sign of the coefficient; a correlation of -0.50 and one of +0.50 represent the same intensity of relationship.

In formula, the Pearson product-moment correlation equals

$$\mathbf{r} = \frac{n\Sigma xy - \Sigma x\Sigma y}{\sqrt{[n\Sigma x^2 - (\Sigma x)^2] [n\Sigma y^2 - (\Sigma y)^2]}}$$

APPENDIX III

INTERCORRELATION MATRIX FOR THE FORCE EXERTIONS

The intercorrelation matrix shown on the following pages lists the correlation coefficients among the 44 force exertion measurements. The legend for the intercorrelation matrix lists the variable number and the variable name for each of the 44 force exertion measurements.

The intercorrelation matrix is read as follows: the correlation coefficient between variable 1 (Stick: Forward Force) and variable 2 (Stick: Backward Force) is 0.29; between variable 1 (Stick: Forward Force) and variable 3 (Stick: Backward Force, Inward Push) is 0.15 and so on.

A correlation coefficient of 0.28 is statistically greater than zero at the 0.05 level of confidence for n = 51.

÷

LEGEND FOR INTERCORRELATION MATRIX

Variable Number

Variable Name

STICK

1	Forward Force
2	Backward Force
3	Backward Force,
	Inward Push
4	Backward Force,
	Two Hands
5	I.eft Force
6	Right Force
7	Up Force
8	Down Force

THROTTLE

9	Forward Force, Handle
	Vertical
10	Forward Force, Handle
	Horizontal
11	Backward Force, Handle
	Vertical
12	Backward Force, Handle
	Horizontal
13	Left Force
14	Right Force
15	Up Force
16	Down Force

COLLECTIVE

17	Forward Force
18	Backward Force
19	Left Force
20	
21	Up Force
22	Down Force

Variable Number

. 1

Variable Name

.

OVERHEAD CONTROL

23	Forward Force
24	Backward Force
25	Left Force
26	Right Force
27	Up Force
28	Down Force

PANEL CONTROL

29	Forward Force
30	Backward Force
31	Left Force
32	Right Force
33	Up Force
34	Down Force

HATCH CONTROL

35	Forward Force
36	Backward Force
37	Left Force
38	
39	Up Force
40	
41	
42	Backward Force-45°
43	Left Force-45°
44	

APPENDIX III

INTERCORRELATION MATRIX FOR FORCE EXERTIONS

Variable No.	1	2	3	4	5	6	7	8	9	10
1	_	.29	.15	.49	.36	.48	.15	.89	35	48
2	.29		.24	.79	.59	.36	.53	.87	.84	61
3	.15	.24		.28	.10	.14	.80	.38	.07	.19
4 E	.49	.79	.28	—	.59	.47	.54	.85	.49	70
D	.36	.59	.10	.59		.59	.55	.52	.54	.55
6	.43	.36	.14	.47	.59		.35	.44	48	59
7	.15	.53	.30	.54	.55	.85		.44	.56	.55
8	.39	.87	.38	.35	.52	.44	.44		.50	.31
9 10	.35	.84	.07	.47	.54	.48	.56	.50		.73
10	.48	.61	.19	.70	.55	.59	.55	.31	.73	_
11	.41	.78	.14	.74	.70	.60	.61	.40	.57	.78
12	.34	.79	.22	.74	.60	.43	.68	.32	.54	.72
10	08	.33	.11	.24	.18	.14	.25	.07	.34	.23
15	.34	.05	.26	.73	.54	.68	.50	.26	.53	.66
10	.03	.49	.21	.42	.47	.40	.62	.32	.36	.39
16	.17	.46	.20	.40	55	55	57	E 0	50	40
17	.38	.51	.20	.51	.53	.00	20	.03 20	.00	.43
18	.29	.54	.24	.67	.45	.41	.00	.23	.52	.00
19	.12	.25	.13	.20	.00	04	.05	16	.45	10.
20	.35	.37	.42	.41	.25	.29	.32	.29	.32	.20
21	.15	.52	.29	.44	.58	49	72	52	49	47
22	.09	.03	.31	.02	.35	.35	.21	.32	.34	.32
23	.41	.44	.40	.42	47	40	57	A77	20	90
24	.28	.63	.19	.53	.52	43	41	12	.09	.39
25	.38	.48	.36	.49	.34	.40	39	27	.00	.04
26	.30	.43	.25	.50	.53	.43	.40	30	40	.40
27	.52	.34	.07	.40	.24	.40	.18	.18	.34	.51
28	.26	.51	32	54	45		50	05	•	
29	.41	.44	34	48	.40	.44	.03	.87	.34	.48
30	.14	.43	.20	40	35	.07	.01 51	.25	.49	.63
31	.12	.43	.19	40	32	.44	.01 94	.09	.42	.53
32	.36	.52	.34	.51	.49	.72	.54	.24	.43 .44	.33 .57
33	.21	.68	.22	.45	43	31	55	95	94	40
34	.16	.49	.14	.31	.58	55	53	.00	.34 49	.42
35	.32	.36	.17	.34	.17	.02	30	21	30	20
36	.38	.60	.36	.53	.51	.29	.52	.23	48	.50
37	.32	.48	.39	.50	.43	.45	.60	.45	.49	.54
38	.20	.21	.46	.39	.37	.49	.52	.32	45	A R
39	.21	.46	.33	.30	.35	.12	.38	.18	.24	-92
40	.45	.58	.30	.47	.57	.48	.48	.47	.50	53
41	.37	.29	.42	.37	.17	.24	.26	.33	.30	43
42	.18	.42	.39	.39	.39	.31	.55	.19	.38	.46
43	.17	.35	.32	.39	.50	.46	.37	.24	.48	49
44	.22	.45	.48	.44	.43	.39	.40	.27	.33	.37
INTERCORRELATION MATRIX FOR FORCE EXERTIONS (Continued)

Variable No.	11	12	13	14	15	16	17	18	19	2 0
1	41	94	- 08	84	08	17	38	29	12	85
1	.11	.01	.00	.04 CE			51	54		97
4	.10	.19	.33	.00	.45	.40	.01	.04	.20	.01
3	.14	.22	.11	.26	.21	.20	.20	.24	.13	.42
4	.74	.74	.24	.73	.42	.40	.51	.67	.20	.41
5	.70	.60	.18	.54	.47	.55	.53	.49	.00	.25
6	.60	.43	.14	.68	.40	.65	.54	.41	.04	.29
7	61	83	95	50	62	57	99	59	02	82
6	.01	.00	.20	.00	.02	59	.00	.00	16	.00
<u>o</u>	.40	.34	.07	.20	.52	.03	.29	.22	.10	.47
9	.57	.54	.34	.53	.36	.50	.52	.49	.30	.32
10	.78	.72	.23	.66	.89	.43	.60	.51	.20	.45
11		.92	.18	.72	.51	.50	.60	.60	01	.40
12	.92		.25	.67	.53	.48	.51	.61	.03	.38
18	18	25		43	26	29	.31	.24	.54	.32
14	72	67	19		50	58	66	64	15	46
12	. 14 E 1	.01	.40	50		.00	.00	67	10	.40
10	.01	.00	.20	.90		.01	.00	.07	.10	.30
16	.50	.48	.29	.58	.61		.89	.53	.21	.16
17	.60	.51	.31	.66	.33	.39	_	.49	.12	.35
18	.60	.61	.24	.64	.67	.53	.49		.05	.33
19	- 01	03	54	15	10	21	12	05	_	30
20	40	32	32	16	36	16	95	20	30	
20	.40	.00	.04	.40	.00	.10	.00	.00	.00	
21	.67	.61	.17	.57	.70	.59	.47	.59	.06	.40
22	.32	.28	.17	.24	.25	.37	.33	.17	.11	.32
23	.60	.65	.08	44	49	.50	.33	.51	02	.47
24	64	64	22	64	AR	54	45	53	19	25
25	.04	.04	.20	50		95	.10	.00	.15	95
20	.00	.00	.05	.00	.23	.30	.40	.00	.00	.00
20	.49	.49	.15	.52	.50	.62	.32	.48	~.04	.41
27	.48	.39	16	.43	.19	.21	.49	.36	.02	.15
28	.69	.70	.00	.40	.42	.32	.37	.55	.18	.25
29	.68	.61	.17	64	.41	.42	.54	43	.16	.41
30	53	60	35			35	18	26	15	10
21	.00	.00	57	.10	21	.00	40	.20		
90	.41	.41	.01	.02	.01	.02	.40	.40	.00	.61
32	.07	.00	.22	.19	.94	.00	.04	.00	.08	.45
33	.66	.67	.36	.62	.51	.49	.62	.47	.12	.39
34	.64	.55	.16	.43	.44	.61	.54	.37	.06	.19
35	.29	.39	56	.30	.11	.27	.27	.25	.53	.16
36	55	62	26	50	31	44	50	46	81	34
97	55	52	15	51	.01	54	.00	40	.01	.04
37	.00	.03	.10	.01	.40	.04	16.	.40	.64	.40
38	.37	.35	.31	.46	.31	.48	.40	.41	.11	.32
39	.40	.47	.26	.32	.48	.32	.39	.40	.28	.41
40	. 6 0	.60	.33	.52	.36	.51	.45	.31	.30	.45
41	.33	.36	.06	.27	.13	.06	.18	.19	.33	.43
42	.52	.54	.09	.39	.46	.43	.31	.43	.17	.38
43	A.C.	41	07	40	40	E 1	EE	40	07	96
40	.40	.41	.41	.40	.40	10.	.00	.49	.41	.40
44	.42	.03	.39	.50	.29	.49	.31	.35	.30	.37

INTERCORRELATION MATRIX FOR FORCE EXERTIONS (Continued)

Variable No.	21	22	23	24	2 5	26	27	2 8	2 9	30
1	.15	.09	.41	.28	.38	.80	.52	.26	.41	.14
2	.52	.03	.44	.63	.48	.43	.34	.51	.44	.43
3	.29	.31	.40	.19	.36	.25	.07	.37	.84	.20
4	.44	.02	.42	.53	.49	.50	.40	.54	.48	.42
5	.58	.35	.47	.52	.34	.53	.24	.45	.52	.85
6	.49	.35	.40	.43	.40	.43	.40	.44	.57	.24
7	.72	.31	.57	.41	.39	.40	.18	.53	.51	.51
8	.52	.32	.47	.12	.27	.30	.18	.32	.25	.09
9	.48	.34	.39	.38	.28	.40	.34	.34	.49	.42
10	.47	.82	.89	.54	.46	.44	.51	.48	.63	.58
11	.67	.32	.60	.64	.55	.49	.48	.69	.68	.53
12	.61	.28	.65	.64	.63	.49	.39	.70	.61	.60
13	.17	.17	.08	.23	.09	.15	16	.00	.17	.35
14	.57	.24	.44	.64	.50	.52	.43	.40	.64	.49
15	.40	.25	.49	.46	.29	.56	.19	.42	.41	.22
16	.59	.37	.50	.54	.35	.62	.21	.32	.42	.35
17	.47	.33	.33	.45	.43	.82	.49	.37	.54	.48
18	.59	.17	.51	.53	.30	.48	.36	.55	.43	.26
19	.06	.11	02	.19	.05	04	.02	.18	.16	.15
20	.40	.32	.47	.25	.35	.47	.15	.25	.41	.10
21		.49	.63	.53	.44	.49	.36	.58	.56	.39
22	.49		.38	.25	.30	.32	.00	.26	.36	.32
23	.63	.38		.52	.64	.52	.24	.63	.45	.22
24	.53	.25	.52		.59	.61	.39	.39	.53	.44
25	.44	.30	.64	.59		.56	.30	.44	.43	.43
26	.49	.32	.52	.61	.56		.20	.32	.37	.23
27	.36	.00	.24	.39	.30	.20		.42	.54	.35
28	.58	.26	.63	.39	.44	.32	.42		.51	.31
29	.56	.36	.45	.53	.43	.37	.54	.51	—	.55
30	.39	.32	.22	.44	.43	.23	.35	.31	.55	_
31	.34	.37	.24	.44	.23	.30	.19	.33	.30	.39
32	.67	.41	.62	.57	.64	.45	.32	.48	.66	.39
33	.63	.28	.51	.60	.42	.36	.26	.37	.48	.46
34	. 6 0	.45	.50	.54	.47	.33	.21	.41	.57	.36
35	.10	.21	.30	.23	.15	.08	.17	.17	.28	.45
36	.49	.30	.46	.62	.55	.55	.32	.35	.61	.53
37	.66	.42	.61	.52	.36	.36	.25	.47	.57	.36
38	.56	.47	.51	.85	.43	.37	.15	.45	.36	.44
39	.37	.18	.47	.42	.32	.46	.17	.33	.41	.26
40	.49	.42	.52	.59	.54	.57	.30	.42	.57	.49
41	.19	.26	.26	.17	.43	.22	.34	.35	.37	.37
42	.61	.50	.44	.59	.44	.50	.36	.41	.58	.48
43	.40	.43	.42	.58	.43	.49	.27	.38	.33	.33
44	.41	.41	.44	.53	.51	.49	.21	.31	.50	.59

INTERCORRELATION MATRIX FOR FORCE EXERTIONS

(Continued)

Variable No.	31	32	33	34	35	36	37	38	39	40
1	.12	.36	.21	.16	.82	.33	.32	.20	.21	.45
2	.43	.52	.68	.49	.36	.60	.48	.21	.46	.58
3	.19	.34	.ZZ	,14	.17	.35	.39	.40	.38	.30
4	.40	.01	.40 49	.01	.04	.00 51	90. 91	.33 97	.00	.41
5	.02	.45	.40	.00	.11	.01	.40	.01	.00	.01
6	.27	.72	.81	.55	.02	.29	.45	.49	.12	.48
7	.34	.57	.55	.53	.30	.52	.60	.52	.38	.48
ð	.24	.38	.30	.40	.21	.23	.40	.32	.10	.41
10	.40	57	.04	.44	.05	.40	.43	.46	.23	.58
	.00	.01	.74	.01		.01	.01	.10		.00
11	.41	.67	.66	.64	.29	.55	.55	.87	.40	.60
12	.41	.65	.67	.55	.39	.62	.58	.35	.47	.60
13	.57	.22	.36	.16	.56	.26	.15	.31	.26	.33
14	.62	.79	.62	.43	.30	.50	.51	.40	.32	.02
15	.51	.54	.51	.44	.11	.91	.40	16.	.40	.00
16	.92	.58	.49	.61	.27	.44	.54	.48	.32	.51
17	.49	.54	.62	.54	.27	.50	.37	.40	.39	.45
18	.40	.56	.47	.37	.25	.46	.48	.41	.40	.31
19	.89	.08	.12	.06	.43	.81	.24	.11	.28	.30
20	.27	.43	.39	.19	.16	.34	.45	.32	.41	.45
21	.34	.67	.63	. 6 0	.10	.49	.66	.5 6	.37	.49
22	.37	.41	.28	.45	.21	.30	.42	.47	.18	.42
28	24	62	51	50	30	46	.61	.51	.47	.52
24	.44	.57	.60	.54	.23	.62	.52	.35	.42	.59
$\overline{25}$.23	.64	.42	.47	.15	.55	.36	.43	.82	.54
26	. 3 0	.45	.36	.33	.08	.55	.36	.37	.46	.57
27	.19	.82	.26	.21	.17	.82	.25	.15	.17	.80
28	.33	.48	.87	.41	.17	.35	.47	.45	.83	.42
29	.30	.66	.48	.57	.28	.61	.57	.86	.41	.57
30	.39	.89	.46	.36	.45	.53	.36	.44	.26	.49
31		.33	.47	.33	.44	.40	.26	.34	.48	.41
82	.33	—	.69	.63	.22	.53	.61	.52	.3%	.54
83	.47	.59		.52	.29	.49	.40	.26	.58	.50
34	.33	.63	.52		.15	.56	.56	.37	.41	.60
35	.44	.22	.29	.15		.40	.33	.26	.17	.39
36	.40	.58	.49	.56	.40		.51	.38	.53	.68
37	.26	.61	.40	.56	.33	.51	-	.58	.27	.51
38	.34	.52	.26	.87	.26	.38	.58	_	.16	.42
39	.48	.32	.58	.41	.17	.53	.27	.16		.48
- 40	.41	.54	.50	.60	.39	.68	.51	.42	.48	
41	.29	.29	.15	.14	.19	.38	.29	.33	.32	.35
42	.32	,4.7	.40	.40	.19	.09	.D1	.40	.46	.40
43	.47	.42	.28	.61	.23	.61	.52	.48	.40	.43
44	.42	.51	.44	.40	.82	.57	.46	.51	.48	.67

INTERCORRELATION MATRIX FOR FORCE EXERTIONS

(Continued)

Variable No.	41	42	43	44
1	. 87	.18	.17	.22
2	.29	.42	.35	.45
3	.42	.39	.32	.48
4	. 3 7	.39	.39	.44
5	.17	.39	.50	.43
6	.24	.31	.46	.39
7	.26	.55	.87	.40
8	.33	.19	.24	.27
9	.30	.38	.88	.33
10	.43	.46	.49	.37
11	.33	.52	.46	.42
12	.36	.54	.41	.53
18	.06	.09	.27	.39
14	.27	.39	.48	.50
15	.13	.46	.40	.29
16	.06	.43	.51	.49
17	.18	.31	.55	.31
18	.19	.43	.49	.35
19	.33	.17	.27	.30
20	.43	.38	.26	.37
21	.19	. 61	.40	.41
22	.26	.50	.43	.41
23	.26	.44	.42	.44
24	.17	.59	.58	.53
25	.43	.44	.43	.51
26	.22	.50	.49	.49
27	.34	. 36	.27	.21
28	.35	.41	.38	. 31
29	.37	.58	.33	.50
30	.37	.48	.33	.59
31	.29	.32	.47	.42
32	.29	.47	.42	.51
33	.15	.45	.28	.44
34	.14	.46	.61	.40
35	.19	.15	.23	.32
36	.38	.59	.61	.57
37	.28	.57	.52	.46
38 39 40 41 42	.33 .32 .36 .48	.46 .48 .46 .48	.43 .40 .43 .35 .48	.51 .48 .67 .46 .58
43 44	.35 .46	.48 .58	.44	.44

APPENDIX IV

CORRELATIONS COEFFICIENTS BETWEEN MEASURES OF FORCE EXERTIONS AND BODY SIZE, GRIP STRENGTH, AND AGE

Variable Name	Weight	Stature	Sitting Height	Thumb-Tip Reach	Lateral Thumb-Tip Reach	Grip Strength I	Grip Strength II	Grip Strength III	Grip Strength Average	Age
STICK										
Forward Force	.06	.02	.11	.30	.10	.30	.46	.40	.41	17
Backward Force,	.34	.10	.14	.12	.29	.32	.36	.40	.38	12
Backward Force										
Inward Push	.26	.38	.26	.46	.40	.08	.02	.14	.03	05
Backward Force,	07	00	07	00	90	07		40	46	. 05
Two Hands	.31	.09	.07	.22	.30	.31	.44	.49	.40 VA	UD 19
Leit Force Bight Force	.00 56	.23	.32	.10	.G1 AE	.34	.41	.51	.35	14
Kight Force	.00	.41	.33	.44	.40	.30	.41	.442 AQ	.42	14
Doum Force	.00	.29	.30	.00	014. 00	.01 90	.50	64-7 99	.41	- 20
Down Force	.20	.03	.09	.00	.03	.40	.04	.00	.04	20
THROTTLE										
Forward Force,										
Handle Vertical	.34	.06	.11	.15	.01	.14	.27	.25	.23	12
Forward Force, Handle Horizontal	.43	.16	.14	.41	.31	.31	.43	.51	.44	18
Backward Force, Hendle Vertical	.58	.32	.33	.89	.44	.5 6	.62	.63	.64	17
Backward Force,					40			-		~~
Handle Horizontal	.55	.29	.32	.40	.42	.45	.48	.53	.51	25
Left Force	.11	.09	.27	05	01	15	~.13	09	13	05
Right Force	.52	.37	.29	.40	.46	.33	.38	.45	.41	09
Up Force	.04	.43	.38	.33	10.	.20	.18	.19	.20	03
Down Force	.65	.45	.42	.24	.43	.16	.23	.21	.23	19
COLLECTIVE										
Forward Force	.27	.13	.16	.27	.21	.29	.43	.38	.89	.03
Backward Force	.54	.21	.19	.24	.36	.43	.37	.40	.42	.01
Left Force	13	04	.01	11	16	34	17	13	23	09
Right Force	.17	.24	.25	.45	.28	.10	.22	.32	.22	09
Up Force	.73	.35	.40	.33	.47	.33	.36	.39	.38	.01
Down Force	.47	.43	.47	.45	.39	.14	.20	.25	.21	18
OVERHEAD CONTROL										
Forward Force	.57	.51	.58	.53	.51	.35	.36	.40	.39	26
Backward Force	.58	.38	.42	.31	.45	.18	.19	.25	.22	17
Left Force	.43	.41	.47	.44	.48	.14	.17	.25	.20	13
Right Force	.45	.40	.45	.36	.38	.05	.13	.25	.15	08
Up Force	.16	08	08	.21	.17	.22	.39	.33	.33	18
Down Force	.49	.24	.26	.42	.37	.44	.51	.52	.52	18

CORRELATIONS COEFFICIENTS BETWEEN MEASURES OF FORCE EXERTIONS AND BODY SIZE, GRIP STRENGTH, AND AGE

(Continued)

-

PANEL CONTROL Forward Force .51 .44 .36 .51 .58 .40 .58 .55 .54 1 Backward Force .38 .22 .28 .24 .36 .13 .24 .31 .24 0 Left Force .22 .18 .23 .12 .12 .06 .09 .15 .11 2 Right Force .71 .55 .49 .54 .56 .36 .38 .40 .40 1 Up Force .47 .33 .34 .19 .38 .32 .33 .36 .36 .11 1 HATCH CONTROL .57 .42 .41 .28 .41 .40 .45 .34 .41 .1 HATCH CONTROL .57 .42 .41 .28 .21 .29 .34 .40 .43 .40 .43 .41 .1 HATCH CONTROL .55 .55 .28 .27 .21 .29 .34 .30 .0 Left Force	Variable Name	Weight	Stature	Sitting Height	Thumb-Tip Reach	Lateral Thumb-Tip Reach	Grìp Strength I	Grip Strength II	Grip Strength III	Grip Strength Average	Age
Forward Force.51.44.36.51.53.40.58.55.541Backward Force.38.22.28.24.36.13.24.31.240Left Force.22.13.23.12.12.06.09.15.112Right Force.71.55.49.54.56.36.38.40.401Up Force.47.33.34.19.38.32.33.36.361Down Force.57.42.41.28.41.40.45.34.411HATCH CONTROLForward Force.1007.16.09.00.04.13.10.093Backwaru Force.34.19.25.28.27.21.29.34.300Left Force.55.35.28.45.38.25.38.39.361Up Force.49.38.40.41.44.07.11.30.170Up Force.21.34.31.21.35.12.17.20.170Up Force.34.24.39.28.23.18.35.34.311Backward Force.34.24.39.28.23.18.35.34.311Down Force.34.24.39.22 <th>PANEL CONTROL</th> <th></th>	PANEL CONTROL										
Backward Force.38.22.28.24.36.13.24.31.240Left Force.22.13.23.12.12.06.09.15.112Right Force.71.55.49.54.56.36.38.40.401Up Force.47.33.34.19.38.32.33.36.361Down Force.57.42.41.28.41.40.45.34.411HATCH CONTROLForward Force.1007.16.09.00.04.13.10.093Backwaru Force.34.19.25.28.27.21.29.34.300Left Force.55.35.28.45.38.25.38.39.361Up Force.21.34.31.21.35.12.17.20.170Up Force.21.34.31.21.35.12.17.20.170Up Force.34.24.39.28.23.18.35.34.310Left Force.45°.01.09.05.27.22.00.05.25.112Down Force.34.24.39.28.23.18.35.34.310Left Force.45°.50.42	Forward Force	.51	.44	.36	.51	.53	.40	.58	.55	.54	12
Left Force.22.13.23.12.12.06.09.15.112Right Force.71.55.49.54.56.36.38.40.401Up Force.47.33.34.19.38.32.33.36.361Down Force.57.42.41.28.41.40.45.34.411HATCH CONTROLForward Force.1007.16.09.00.04.13.10.093Backwaru Force.34.19.25.28.27.21.29.34.300Left Force.55.35.28.45.38.25.38.39.361Right Force.49.38.40.41.44.07.11.30.170Up Force.21.34.31.21.35.12.17.20.170Down Force.34.24.39.28.23.18.35.34.310Backward Force.45°.01.09.05.27.22.00.05.25.112Backward Force.45°.50.42.42.63.15.20.29.23.191Backward Force.45°.38.36.27.29.40.13.20.23.191Backward Force <td>Backward Force</td> <td>.38</td> <td>.22</td> <td>.28</td> <td>.24</td> <td>.36</td> <td>.13</td> <td>.24</td> <td>.31</td> <td>.24</td> <td>02</td>	Backward Force	.38	.22	.28	.24	.36	.13	.24	.31	.24	02
Right Force.71.55.49.54.56.36.38.40.401Up Force.47.33.34.19.38.32.33.36.361Down Force.57.42.41.28.41.40.45.34.411HATCH CONTROLForward Force.10 07 .16.09.00.04.13.10.093Backwaru Force.34.19.25.28.27.21.29.34.300Left Force.55.35.28.45.38.25.38.39.361Right Force.49.38.40.41.44.07.11.30.170Up Force.21.34.31.21.35.12.17.20.170Down Force.34.24.39.28.23.18.35.34.310Down Force.34.24.39.28.23.18.35.34.310Left Force.45°.01.09.05.27.22.00.05.25.112Backward Force.45°.50.42.42.63.15.20.29.23.1Left Force.45°.38.36.27.29.40.13.20.23.191Backward Force.45°	Left Force	.22	.13	.23	.12	.12	.06	.09	.15	.11	22
Up Force.47.33.34.19.38.32.33.36.36 1 Down Force.57.42.41.28.41.40.45.34.41 1 HATCH CONTROLForward Force.10 07 .16.09.00.04.13.10.09 3 Backwaru Force.34.19.25.28.27.21.29.34.30 0 Left Force.55.35.28.45.38.25.38.39.36 1 Right Force.49.38.40.41.44.07.11.30.17 0 Up Force.21.34.31.21.35.12.17.20.17 0 Down Force.34.24.39.28.23.18.35.34.31 0 Down Force.34.24.39.28.23.18.35.34.31 0 Down Force.34.24.39.28.23.18.35.34.31 0 Down Force.34.24.39.28.23.18.35.34.31 0 Backward Force-45°.50.42.42.42.53.15.20.29.23.11.20Bight Force-45°.38.36.27.29.40.13.20.23.19.11Bight Force-45°	Right Force	.71	.55	.49	.54	.56	.36	.38	.40	.40	13
Down Force.57.42.41.28.41.40.45.34.411HATCH CONTROLForward Force.10 07 .16.09.00.04.13.10.093Backwaru Force.34.19.25.28.27.21.29.34.300Left Force.55.35.28.45.38.25.38.39.361Right Force.49.38.40.41.44.07.11.30.170Up Force.21.34.31.21.35.12.17.20.170Down Force.34.24.39.28.23.18.35.34.310Forward Force.45°.01.09.05.27.22.00.05.25.112Backward Force.45°.50.42.42.43.15.20.29.23.11Backward Force.45°.50.42.42.43.15.20.29.23.11Bight Force.45°.50.42.42.43.15.20.29.23.11Backward Force.45°.50.42.42.43.15.20.29.23.11.20Bight Force.45°.50.42.42.43.15.20.29.23.14Bight	Up Force	.47	.33	.34	.19	.38	.32	.33	.36	.36	11
HATCH CONTROLForward Force.10 07 .16.09.00.04.13.10.09 3 Backwaru Force.34.19.25.28.27.21.29.34.30 0 Left Force.55.35.28.45.38.25.38.39.36 1 Right Force.49.38.40.41.44.07.11.30.17 0 Up Force.21.34.31.21.35.12.17.20.17 0 Down Force.34.24.39.28.23.18.35.34.31 0 Forward Force.45°.01.09.05.27.22.00.05.25.11 2 Backward Force.45°.50.42.42.63.15.20.29.23 1 Left Force.45°.38.36.27.29.40.13.20.23.19 1 Right Force.45°.38.36.27.29.40.13.20.23.19 1	Down Force	.57	.42	.41	.28	.41	.40	.45	.34	.41	11
Forward Force.10 07 .16.09.00.04.13.10.09 3 Backwaru Force.34.19.25.28.27.21.29.34.30 0 Left Force.55.35.28.45.38.25.38.39.36 1 Right Force.49.38.40.41.44.07.11.30.17 0 Up Force.21.34.31.21.35.12.17.20.17 0 Down Force.34.24.39.28.23.18.35.34.31 0 Forward Force.45°.01.09.05.27.22.00.05.25.11 2 Backward Force.45°.50.42.42.63.15.20.29.23 1 Backward Force.45°.38.36.27.29.40.13.20.23.19 1 Bight Force.45°.38.36.27.29.40.13.20.23.19 1	HATCH CONTROL										
Backwaru Force.34.19.25.28.27.21.29.34.300Left Force.55.35.28.45.38.25.38.39.361Right Force.49.38.40.41.44.07.11.30.170Up Force.21.34.31.21.35.12.17.20.170Down Force.34.24.39.28.23.18.35.34.310Forward Force.45°.01.09.05.27.22.00.05.25.112Backward Force.45°.50.42.42.63.15.20.29.231Left Force.45°.38.36.27.29.40.13.20.23.191Right Force.45°.38.36.27.29.40.13.20.23.191	Forward Force	.10	07	.16	.09	.00	.04	.13	.10	.0 9	35
Left Force.55.35.28.45.38.25.38.39.361Right Force.49.38.40.41.44.07.11.30.170Up Force.21.34.31.21.35.12.17.20.170Down Force.34.24.39.28.23.18.35.34.310Forward Force.45°.01.09.05.27.22.00.05.25.112Backward Force.45°.50.42.42.42.53.15.20.29.231Left Force.45°.38.36.27.29.40.13.20.23.191Right Force.45°.39.38.42.24.87.08.01.17.041	Backwaru Force	.34	.19	.25	.28	.27	.21	.29	.34	.30	06
Right Force.49.38.40.41.44.07.11.30.17.0Up Force.21.34.81.21.35.12.17.20.17.0Down Force.34.24.39.28.23.18.35.34.31.0Forward Force-45°.01.09.05.27.22.00.05.25.11.2Backward Force-45°.50.42.42.42.53.15.20.29.23.1Left Force-45°.38.36.27.29.40.13.20.23.19.1Bight Force-45°.39.38.42.24.87.08.01.17.04.1	Left Force	.55	.35	.28	.45	.38	.25	.38	.89	.36	12
Up Force.21.34.31.21.35.12.17.20.17.0Down Force.34.24.39.28.23.18.35.34.31.0Forward Force.45°.01.09.05.27.22.00.05.25.11.2Backward Force.45°.50.42.42.42.53.15.20.29.23.11.2Left Force.45°.38.36.27.29.40.13.20.23.19.1Right Force.45°.39.38.42.24.87.08.01.17.04.1	Right Force	.49	.38	.40	.41	.44	.07	.11	.30	.17	03
Down Force.34.24.39.28.23.18.35.34.310Forward Force-45°.01.09.05.27.22.00.05.25.112Backward Force-45°.50.42.42.42.53.15.20.29.231Left Force-45°.38.36.27.29.40.13.20.23.191Right Force-45°.39.36.42.42.87.08.01.17.041	Up Force	.21	.34	.31	.21	.35	.12	.17	.20	.17	09
Forward Force-45° .01 .09 .05 .27 .22 .00 .05 .25 .11 2 Backward Force-45° .50 .42 .42 .53 .15 .20 .29 .23 1 Left Force-45° .38 .36 .27 .29 .40 .13 .20 .23 .19 1 Right Force-45° .39 .38 .42 .24 .87 .08 .01 .17 .04 1	Down Force	.34	.24	.39	.28	.23	.18	.35	.34	.31	05
Backward Force-45° .50 .42 .42 .53 .15 .20 .29 .23 1 Left Force-45° .38 .36 .27 .29 .40 .13 .20 .23 .19 1 Bight Force-45° .39 .38 .42 .24 .87 .08 .01 .17 .04 1	Forward Force—45°	.01	.09	.05	.27	.22	.00	.05	.25	.11	24
Left Force 45° .38 .36 .27 .29 .40 .13 .20 .23 .19 -1 Right Force 45° .39 .38 .42 .24 .87 .08 .01 .17 .04 -1	Backward Force-45°	.50	.42	.42	.42	.53	.15	.20	.29	.23	15
Right Force 45° 39 38 42 24 87 08 01 17 04 -1	Left Force-45°	.38	.36	.27	.29	.40	.13	.20	.23	.19	12
	Right Force-45°	.39	.38	.42	.24	.37	.08	.01	.17	.04	13

A correlation coefficient of 0.28 is statistically greater than zero at the 0.05 level of confidence for n = 51.

APPENDIX V

Eleven of the experimental subjects completed test-retest sessions on two separate occasions. Within a one-week period, the subjects repeated the entire set of 44 force exertions.

The actual differences between the mean values for the force exertion measurements were found to be less than or equal to 1% for 18 of the 44 measurements; less than or equal to 5% for 17 of the 44 measurements; less than or equal to 10% for 9 of the 44 measurements; and greater than 10% for 5 of the 44 measurements.

The test and retest means and standard deviations are shown in the following table.

TEST-RETEST RESULTS OF FORCE EXERTIONS*

(n=11)

	Tes	st	Retest		
Variable Name	Mean	SD	Mean	SD	
STICK					
Forward Force	60.2	12.0	60.2	14.4	
Backward Force	79.2	14.0	74.5	7.3	
Backward Force, Inward Push	68.4	10.4	68.1	19.4	
Backward Force, Two Hands	156.6	20.2	155.6	18.0	
Left Force	54.2	7.0	58.7	10.9	
Right Force	58.3	13.6	57.5	9.3	
Up Force	59.4	15.5	65.0	11.8	
Down Force	89.5	26.5	89.9	22.1	
THROTTLE					
Forward Force, Handle Vertical	142.9	41.2	123.6	28.9	
Forward Force, Handle Horizontal	136.1	35.9	135.5	19.2	
Backward Force, Handle Vertical	99.0	13.0	95.6	15.3	
Backward Force, Handle Horizontal	97.5	14.2	96.0	13.9	
Left Force	28.1	10.7	22.4	6.4	
Right Force	40.1	9 .5	89.2	8.9	
Up Force	39.8	11.4	39.6	10.4	
Down Force	53.8	13.6	53.3	9.7	
COLLECTIVE					
Forward Force	62.6	12.0	56.0	13.7	
Backward Force	55.0	8.1	55.5	10.6	
Left Force	36.1	14.6	34.1	13.7	
Right Force	45.0	10.1	45.5	8.9	
Up Force	79.7	19.7	87.3	11.7	
Down Force	72.5	15.2	77.9	11.5	
OVERHEAD CONTROL					
Forward Force	25.5	7.4	25.8	8.3	
Backward Force	17.4	4.3	17.4	2.4	
Left Force	24.0	7.6	22.9	5.1	
Right Force	24.3	7.5	22.2	8.9	
Up Force	160.3	39.5	15 5.1	44.0	
Down Force	95.5	9.7	92.7	8.2	
PANEL CONTROL					
Forward Force	154.1	36.4	154.5	84.3	
Backward Force	108.7	12.1	108.3	17.8	
Left Force	24.1	9.4	22.2	3.6	
Right Force	29.9	6.4	32.6	6.2	
Up Force	24.0	4.9	23.3	5.1	
Down Force	35.5	7.2	37.0	7.5	

TEST-RETEST RESULTS OF FORCE EXERTIONS* (n=11)

(Continued)

	Te	Retest		
Variable Name	Mean	SD	Mean	SD
HATCH CONTROL				
Forward Force	29.8	14.0	37.6	16.3
Backward Force	44.5	7.8	42.9	7.5
Left Force	62.5	16.2	71.3	13.7
Right Force	49.7	12.6	51.7	16.0
Up Force	29.8	8.5	31.3	9 .0
Down Force	40.2	7.5	42.0	9.5
Forward Force-45	93.5	12.9	90.7	9.6
Backward Force-45°	84.8	13.5	81.3	10.4
Left Force-45°	35.7	6.7	35.9	6.1
Right Force45°	36.5	7.1	36.8	8.4

*All force exertions are reported in pounds.

. _____

. .

REFERENCES

Churchill, Edmund, "The Computational Procedures," Section V in Anthropometric Survey of Air Force Women—1968 by C. E. Clauser, P. Tucker, J. T. McConville, E. Churchill, L. L. Laubach, and J. Reardon, AMRL-TR-70-5, Wright-Patterson Air Force Base, Ohio: Aerospace Medical Research Laboratory, (in press).

Churchill, Edmund, "Statistical Considerations," Chapter 3 in Human Development, Frank Faulkner (editor), Philadelphia: W. B. Saunders Company, 1966.

Damon, Albert, Howard W. Stoudt, and Ross A. McFarland, The Human Body in Equipment Design, Cambridge, Massachusetts: Harvard University Press, 1966.

Department of the Air Force, Dimensions, Basic, Cockpit, Helicopter, Military Standard MS-33575, U.S. Government Printing Office, Washington, D.C., June 1969.

Department of the Air Force, Dimensions, Basic, Cockpit, Stick Controlled Fixed-Wing Aircraft, Military Standard MS-33574, U.S. Government Printing Office, Washington, D.C., June 1969.

Heeboll-Nielson, Kr., "Muscular Assymptry in Normal Young Men," Communications from The Danish National Association for Infantile Paralysis, Nr. 18, 1964.

Hunsicker, Paul A., Arm Strength at Selected Degrees of Elbow Flexion, WADC Technical Report 54-548, Wright-Patterson Air Force Base, Ohio: Wright Air Development Center, August 1955. (AD 81 792)

Hunsicker, Paul A., A Study of Muscle Forces and Fatigue, WADC Technical Report 57-586, Wright-Patterson Air Force Base, Ohio: Wright Air Development Center, December 1957. (AD 131087)

Kennedy, Kenneth W., Reach Capabilities of the USAF Population Phase 1 The Outer Boundaries of Grasping-Reach Envelopes for the Shirt-Sleeved, Seated Operator, AMRL-TDR-64-59, Wright-Patterson Air Force Base, Ohio: Aerospace Medical Research Laboratories, September 1964. (AD 608269)

Kroemer, K. H. E., Human Strength: Terminology, Measurement and Interpretation of Data, AMRL-TR-69-9, Wright-Patterson Air Force Base, Ohio: Aerospace Medical Research Laboratory, May 1970. Also published in Human Factors, 12(3), 297-313, June 1970.

Kroemer, K. H. E., and J. M. Howard, *Problems in Assessing Muscle Strength*, AMRL-TR-68-144, Wright-Patterson Air Force Base, Ohio: Aerospace Medical Research Laboratory, May 1970. (AD 708 741)

Kroemer, K. H. E., and J. M. Howard, "Towards Standardization of Muscle Strength Testing," Medicine and Science in Sports, 2(4), 224-230, Winter 1970.

Kroemer, K. H. E., and D. E. Robinson, Horizontal Static Forces Exerted by Men Standing in Common Working Positions on Surfaces of Various Tractions, AMRL-TR-70-114, Wright-Patterson Air Force Base, Ohio: Aerospace Medical Research Laboratory, January 1971.

Laubach, Lloyd L., and John T. McConville, "Muscle Strength, Flexibility, and Body Size of Adult Males," *Research Quarterly*, 37(3), 384-392, October 1966.

Laubach, Lloyd L., and John T. McConville, "The Relationship of Strength to Body Size and Typology," Medicine and Science in Sports, 1(4), 189-194, December 1969.

Watt, D. N.. Maximum Forces Exerted on a Stick Type Control Column, Report 63-RD-1, Royal Canadian Air Force, Toronto 12, Ontario, Canada: Institute of Aviation Medicine, January 1963.